Documentation

Mathlib.CategoryTheory.Functor.Functorial

Unbundled functors, as a typeclass decorating the object-level function. #

class CategoryTheory.Functorial {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {D : Type u₂} [CategoryTheory.Category.{v₂, u₂} D] (F : CD) :
Type (max v₁ v₂ u₁ u₂)

An unbundled functor.

Instances
    def CategoryTheory.map {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {D : Type u₂} [CategoryTheory.Category.{v₂, u₂} D] (F : CD) [CategoryTheory.Functorial F] {X : C} {Y : C} (f : X Y) :
    F X F Y

    If F : C → D (just a function) has [Functorial F], we can write map F f : F X ⟶ F Y for the action of F on a morphism f : X ⟶ Y.

    Equations
    Instances For

      Bundle a functorial function as a functor.

      Equations
      Instances For
        @[simp]
        theorem CategoryTheory.map_functorial_obj {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {D : Type u₂} [CategoryTheory.Category.{v₂, u₂} D] (F : CategoryTheory.Functor C D) {X : C} {Y : C} (f : X Y) :
        CategoryTheory.map F.obj f = F.toPrefunctor.map f
        Equations

        G ∘ F is a functorial if both F and G are.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For