Vertex group #
This file defines the vertex group (aka isotropy group) of a groupoid at a vertex.
Implementation notes #
- The instance is defined "manually", instead of relying on CategoryTheory.Aut.groupor usingCategoryTheory.inv.
- The multiplication order therefore matches the categorical one: x * y = x ≫ y.
- The inverse is directly defined in terms of the groupoidal inverse: x ⁻¹ = Groupoid.inv x.
Tags #
isotropy, vertex group, groupoid
@[simp]
theorem
CategoryTheory.Groupoid.vertexGroup_inv
{C : Type u}
[CategoryTheory.Groupoid C]
(c : C)
 :
∀ (a : c ⟶ c), a⁻¹ = CategoryTheory.Groupoid.inv a
@[simp]
theorem
CategoryTheory.Groupoid.vertexGroup_mul
{C : Type u}
[CategoryTheory.Groupoid C]
(c : C)
(x : c ⟶ c)
(y : c ⟶ c)
 :
x * y = CategoryTheory.CategoryStruct.comp x y
@[simp]
The vertex group at c.
Equations
- CategoryTheory.Groupoid.vertexGroup c = Group.mk (_ : ∀ (f : c ⟶ c), CategoryTheory.CategoryStruct.comp (CategoryTheory.Groupoid.inv f) f = CategoryTheory.CategoryStruct.id c)
theorem
CategoryTheory.Groupoid.vertexGroup.inv_eq_inv
{C : Type u}
[CategoryTheory.Groupoid C]
(c : C)
(γ : c ⟶ c)
 :
The inverse in the group is equal to the inverse given by CategoryTheory.inv.
@[simp]
theorem
CategoryTheory.Groupoid.vertexGroupIsomOfMap_symm_apply
{C : Type u}
[CategoryTheory.Groupoid C]
{c : C}
{d : C}
(f : c ⟶ d)
(δ : d ⟶ d)
 :
@[simp]
theorem
CategoryTheory.Groupoid.vertexGroupIsomOfMap_apply
{C : Type u}
[CategoryTheory.Groupoid C]
{c : C}
{d : C}
(f : c ⟶ d)
(γ : c ⟶ c)
 :
def
CategoryTheory.Groupoid.vertexGroupIsomOfMap
{C : Type u}
[CategoryTheory.Groupoid C]
{c : C}
{d : C}
(f : c ⟶ d)
 :
An arrow in the groupoid defines, by conjugation, an isomorphism of groups between its endpoints.
Equations
- One or more equations did not get rendered due to their size.
Instances For
def
CategoryTheory.Groupoid.vertexGroupIsomOfPath
{C : Type u}
[CategoryTheory.Groupoid C]
{c : C}
{d : C}
(p : Quiver.Path c d)
 :
A path in the groupoid defines an isomorphism between its endpoints.
Equations
Instances For
@[simp]
theorem
CategoryTheory.Groupoid.CategoryTheory.Functor.mapVertexGroup_apply
{C : Type u}
[CategoryTheory.Groupoid C]
{D : Type v}
[CategoryTheory.Groupoid D]
(φ : CategoryTheory.Functor C D)
(c : C)
 :
∀ (a : c ⟶ c), (CategoryTheory.Groupoid.CategoryTheory.Functor.mapVertexGroup φ c) a = φ.toPrefunctor.map a
def
CategoryTheory.Groupoid.CategoryTheory.Functor.mapVertexGroup
{C : Type u}
[CategoryTheory.Groupoid C]
{D : Type v}
[CategoryTheory.Groupoid D]
(φ : CategoryTheory.Functor C D)
(c : C)
 :
A functor defines a morphism of vertex group.
Equations
- One or more equations did not get rendered due to their size.