Documentation

Mathlib.CategoryTheory.Limits.ConcreteCategory

Facts about (co)limits of functors into concrete categories #

theorem CategoryTheory.Limits.Concrete.isColimit_rep_eq_of_exists {C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.ConcreteCategory C] {J : Type v} [CategoryTheory.SmallCategory J] (F : CategoryTheory.Functor J C) [CategoryTheory.Limits.PreservesColimit F (CategoryTheory.forget C)] {D : CategoryTheory.Limits.Cocone F} {i : J} {j : J} (hD : CategoryTheory.Limits.IsColimit D) (x : (CategoryTheory.forget C).toPrefunctor.obj (F.toPrefunctor.obj i)) (y : (CategoryTheory.forget C).toPrefunctor.obj (F.toPrefunctor.obj j)) (h : ∃ (k : J) (f : i k) (g : j k), (F.toPrefunctor.map f) x = (F.toPrefunctor.map g) y) :
(D.app i) x = (D.app j) y
theorem CategoryTheory.Limits.Concrete.colimit_rep_eq_of_exists {C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.ConcreteCategory C] {J : Type v} [CategoryTheory.SmallCategory J] (F : CategoryTheory.Functor J C) [CategoryTheory.Limits.PreservesColimit F (CategoryTheory.forget C)] [CategoryTheory.Limits.HasColimit F] {i : J} {j : J} (x : (CategoryTheory.forget C).toPrefunctor.obj (F.toPrefunctor.obj i)) (y : (CategoryTheory.forget C).toPrefunctor.obj (F.toPrefunctor.obj j)) (h : ∃ (k : J) (f : i k) (g : j k), (F.toPrefunctor.map f) x = (F.toPrefunctor.map g) y) :
theorem CategoryTheory.Limits.Concrete.isColimit_exists_of_rep_eq {C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.ConcreteCategory C] {J : Type v} [CategoryTheory.SmallCategory J] (F : CategoryTheory.Functor J C) [CategoryTheory.Limits.PreservesColimit F (CategoryTheory.forget C)] [CategoryTheory.IsFiltered J] {D : CategoryTheory.Limits.Cocone F} {i : J} {j : J} (hD : CategoryTheory.Limits.IsColimit D) (x : (CategoryTheory.forget C).toPrefunctor.obj (F.toPrefunctor.obj i)) (y : (CategoryTheory.forget C).toPrefunctor.obj (F.toPrefunctor.obj j)) (h : (D.app i) x = (D.app j) y) :
∃ (k : J) (f : i k) (g : j k), (F.toPrefunctor.map f) x = (F.toPrefunctor.map g) y
theorem CategoryTheory.Limits.Concrete.isColimit_rep_eq_iff_exists {C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.ConcreteCategory C] {J : Type v} [CategoryTheory.SmallCategory J] (F : CategoryTheory.Functor J C) [CategoryTheory.Limits.PreservesColimit F (CategoryTheory.forget C)] [CategoryTheory.IsFiltered J] {D : CategoryTheory.Limits.Cocone F} {i : J} {j : J} (hD : CategoryTheory.Limits.IsColimit D) (x : (CategoryTheory.forget C).toPrefunctor.obj (F.toPrefunctor.obj i)) (y : (CategoryTheory.forget C).toPrefunctor.obj (F.toPrefunctor.obj j)) :
(D.app i) x = (D.app j) y ∃ (k : J) (f : i k) (g : j k), (F.toPrefunctor.map f) x = (F.toPrefunctor.map g) y
theorem CategoryTheory.Limits.Concrete.colimit_exists_of_rep_eq {C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.ConcreteCategory C] {J : Type v} [CategoryTheory.SmallCategory J] (F : CategoryTheory.Functor J C) [CategoryTheory.Limits.PreservesColimit F (CategoryTheory.forget C)] [CategoryTheory.IsFiltered J] [CategoryTheory.Limits.HasColimit F] {i : J} {j : J} (x : (CategoryTheory.forget C).toPrefunctor.obj (F.toPrefunctor.obj i)) (y : (CategoryTheory.forget C).toPrefunctor.obj (F.toPrefunctor.obj j)) (h : (CategoryTheory.Limits.colimit.ι F i) x = (CategoryTheory.Limits.colimit.ι F j) y) :
∃ (k : J) (f : i k) (g : j k), (F.toPrefunctor.map f) x = (F.toPrefunctor.map g) y
theorem CategoryTheory.Limits.Concrete.colimit_rep_eq_iff_exists {C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.ConcreteCategory C] {J : Type v} [CategoryTheory.SmallCategory J] (F : CategoryTheory.Functor J C) [CategoryTheory.Limits.PreservesColimit F (CategoryTheory.forget C)] [CategoryTheory.IsFiltered J] [CategoryTheory.Limits.HasColimit F] {i : J} {j : J} (x : (CategoryTheory.forget C).toPrefunctor.obj (F.toPrefunctor.obj i)) (y : (CategoryTheory.forget C).toPrefunctor.obj (F.toPrefunctor.obj j)) :
(CategoryTheory.Limits.colimit.ι F i) x = (CategoryTheory.Limits.colimit.ι F j) y ∃ (k : J) (f : i k) (g : j k), (F.toPrefunctor.map f) x = (F.toPrefunctor.map g) y