Preservation of finite (co)limits. #
These functors are also known as left exact (flat) or right exact functors when the categories involved are abelian, or more generally, finitely (co)complete.
Related results #
CategoryTheory.Limits.preservesFiniteLimitsOfPreservesEqualizersAndFiniteProducts
: seeCategoryTheory/Limits/Constructions/LimitsOfProductsAndEqualizers.lean
. Also provides the dual version.CategoryTheory.Limits.preservesFiniteLimitsIffFlat
: seeCategoryTheory/Functor/Flat.lean
.
A functor is said to preserve finite limits, if it preserves all limits of shape J
,
where J : Type
is a finite category.
- preservesFiniteLimits : (J : Type) → [inst : CategoryTheory.SmallCategory J] → [inst_1 : CategoryTheory.FinCategory J] → CategoryTheory.Limits.PreservesLimitsOfShape J F
Instances
Preserving finite limits also implies preserving limits over finite shapes in higher universes, though through a noncomputable instance.
If we preserve limits of some arbitrary size, then we preserve all finite limits.
Equations
- CategoryTheory.Limits.PreservesLimitsOfSize.preservesFiniteLimits F = CategoryTheory.Limits.PreservesFiniteLimits.mk
Instances For
We can always derive PreservesFiniteLimits C
by showing that we are preserving limits at an
arbitrary universe.
Equations
- CategoryTheory.Limits.preservesFiniteLimitsOfPreservesFiniteLimitsOfSize F h = CategoryTheory.Limits.PreservesFiniteLimits.mk
Instances For
Equations
- CategoryTheory.Limits.idPreservesFiniteLimits = CategoryTheory.Limits.PreservesFiniteLimits.mk
The composition of two left exact functors is left exact.
Equations
- CategoryTheory.Limits.compPreservesFiniteLimits F G = CategoryTheory.Limits.PreservesFiniteLimits.mk
Instances For
A functor F
preserves finite products if it preserves all from Discrete J
for Fintype J
- preserves : (J : Type) → [inst : Fintype J] → CategoryTheory.Limits.PreservesLimitsOfShape (CategoryTheory.Discrete J) F
Instances
A functor is said to preserve finite colimits, if it preserves all colimits of
shape J
, where J : Type
is a finite category.
- preservesFiniteColimits : (J : Type) → [inst : CategoryTheory.SmallCategory J] → [inst_1 : CategoryTheory.FinCategory J] → CategoryTheory.Limits.PreservesColimitsOfShape J F
Instances
Preserving finite limits also implies preserving limits over finite shapes in higher universes, though through a noncomputable instance.
If we preserve colimits of some arbitrary size, then we preserve all finite colimits.
Equations
- CategoryTheory.Limits.PreservesColimitsOfSize.preservesFiniteColimits F = CategoryTheory.Limits.PreservesFiniteColimits.mk
Instances For
We can always derive PreservesFiniteColimits C
by showing that we are preserving colimits at an arbitrary universe.
Equations
- CategoryTheory.Limits.preservesFiniteColimitsOfPreservesFiniteColimitsOfSize F h = CategoryTheory.Limits.PreservesFiniteColimits.mk
Instances For
Equations
- CategoryTheory.Limits.idPreservesFiniteColimits = CategoryTheory.Limits.PreservesColimits.preservesFiniteColimits (CategoryTheory.Functor.id C)
The composition of two right exact functors is right exact.
Equations
- CategoryTheory.Limits.compPreservesFiniteColimits F G = CategoryTheory.Limits.PreservesFiniteColimits.mk
Instances For
A functor F
preserves finite products if it preserves all from Discrete J
for Fintype J
- preserves : (J : Type) → [inst : Fintype J] → CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.Discrete J) F