Documentation

Mathlib.CategoryTheory.Limits.Shapes.Reflexive

Reflexive coequalizers #

We define reflexive pairs as a pair of morphisms which have a common section. We say a category has reflexive coequalizers if it has coequalizers of all reflexive pairs. Reflexive coequalizers often enjoy nicer properties than general coequalizers, and feature heavily in some versions of the monadicity theorem.

We also give some examples of reflexive pairs: for an adjunction F ⊣ G with counit ε, the pair (FGε_B, ε_FGB) is reflexive. If a pair f,g is a kernel pair for some morphism, then it is reflexive.

TODO #

class CategoryTheory.IsReflexivePair {C : Type u} [CategoryTheory.Category.{v, u} C] {A : C} {B : C} (f : A B) (g : A B) :

The pair f g : A ⟶ B is reflexive if there is a morphism B ⟶ A which is a section for both.

Instances
    class CategoryTheory.IsCoreflexivePair {C : Type u} [CategoryTheory.Category.{v, u} C] {A : C} {B : C} (f : A B) (g : A B) :

    The pair f g : A ⟶ B is coreflexive if there is a morphism B ⟶ A which is a retraction for both.

    Instances
      noncomputable def CategoryTheory.commonSection {C : Type u} [CategoryTheory.Category.{v, u} C] {A : C} {B : C} (f : A B) (g : A B) [CategoryTheory.IsReflexivePair f g] :
      B A

      Get the common section for a reflexive pair.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        noncomputable def CategoryTheory.commonRetraction {C : Type u} [CategoryTheory.Category.{v, u} C] {A : C} {B : C} (f : A B) (g : A B) [CategoryTheory.IsCoreflexivePair f g] :
        B A

        Get the common retraction for a coreflexive pair.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          theorem CategoryTheory.IsKernelPair.isReflexivePair {C : Type u} [CategoryTheory.Category.{v, u} C] {A : C} {B : C} {R : C} {f : R A} {g : R A} {q : A B} (h : CategoryTheory.IsKernelPair q f g) :

          If f,g is a kernel pair for some morphism q, then it is reflexive.

          If f,g is reflexive, then g,f is reflexive.

          If f,g is coreflexive, then g,f is coreflexive.

          instance CategoryTheory.instIsReflexivePairObjToQuiverToCategoryStructToQuiverToCategoryStructToPrefunctorObjToPrefunctorObjToPrefunctorCompIdMapMapAppCounit {C : Type u} [CategoryTheory.Category.{v, u} C] {D : Type u₂} [CategoryTheory.Category.{v₂, u₂} D] {F : CategoryTheory.Functor C D} {G : CategoryTheory.Functor D C} (adj : F G) (B : D) :
          CategoryTheory.IsReflexivePair (F.toPrefunctor.map (G.toPrefunctor.map (adj.counit.app B))) (adj.counit.app (F.toPrefunctor.obj (G.toPrefunctor.obj B)))

          For an adjunction F ⊣ G with counit ε, the pair (FGε_B, ε_FGB) is reflexive.

          Equations
          • One or more equations did not get rendered due to their size.

          C has reflexive coequalizers if it has coequalizers for every reflexive pair.

          Instances

            C has coreflexive equalizers if it has equalizers for every coreflexive pair.

            Instances