Documentation

Mathlib.CategoryTheory.Limits.Yoneda

Limit properties relating to the (co)yoneda embedding. #

We calculate the colimit of Y ↦ (X ⟶ Y), which is just PUnit. (This is used in characterising cofinal functors.)

We also show the (co)yoneda embeddings preserve limits and jointly reflect them.

@[simp]
theorem CategoryTheory.Coyoneda.colimitCocone_ι_app {C : Type v} [CategoryTheory.SmallCategory C] (X : Cᵒᵖ) (X_1 : C) (a : (CategoryTheory.coyoneda.toPrefunctor.obj X).toPrefunctor.obj X_1) :
def CategoryTheory.Coyoneda.colimitCocone {C : Type v} [CategoryTheory.SmallCategory C] (X : Cᵒᵖ) :
CategoryTheory.Limits.Cocone (CategoryTheory.coyoneda.toPrefunctor.obj X)

The colimit cocone over coyoneda.obj X, with cocone point PUnit.

Equations
  • One or more equations did not get rendered due to their size.
Instances For

    The proposed colimit cocone over coyoneda.obj X is a colimit cocone.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      noncomputable def CategoryTheory.Coyoneda.colimitCoyonedaIso {C : Type v} [CategoryTheory.SmallCategory C] (X : Cᵒᵖ) :
      CategoryTheory.Limits.colimit (CategoryTheory.coyoneda.toPrefunctor.obj X) PUnit.{v + 1}

      The colimit of coyoneda.obj X is isomorphic to PUnit.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        instance CategoryTheory.yonedaPreservesLimits {C : Type u} [CategoryTheory.Category.{v, u} C] (X : C) :
        CategoryTheory.Limits.PreservesLimits (CategoryTheory.yoneda.toPrefunctor.obj X)

        The yoneda embedding yoneda.obj X : Cᵒᵖ ⥤ Type v for X : C preserves limits.

        Equations
        instance CategoryTheory.coyonedaPreservesLimits {C : Type u} [CategoryTheory.Category.{v, u} C] (X : Cᵒᵖ) :
        CategoryTheory.Limits.PreservesLimits (CategoryTheory.coyoneda.toPrefunctor.obj X)

        The coyoneda embedding coyoneda.obj X : C ⥤ Type v for X : Cᵒᵖ preserves limits.

        Equations

        The yoneda embeddings jointly reflect limits.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For

          The coyoneda embeddings jointly reflect limits.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            Equations
            Equations
            Equations
            • CategoryTheory.yonedaFunctorReflectsLimits = inferInstance
            Equations
            • CategoryTheory.coyonedaFunctorReflectsLimits = inferInstance