Documentation

Mathlib.CategoryTheory.Localization.Pi

Localization of product categories #

In this file, it is shown that if for all j : J (with J finite), functors L j : C j ⥤ D j are localization functors with respect to a class of morphisms W j : MorphismProperty (C j), then the product functor Functor.pi L : (∀ j, C j) ⥤ ∀ j, D j is a localization functor for the product class of morphisms MorphismProperty.pi W. The proof proceeds by induction on the cardinal of J using the main result of the file Mathlib.CategoryTheory.Localization.Prod.

Equations
  • One or more equations did not get rendered due to their size.

If L : C ⥤ D is a localization functor for W : MorphismProperty C, then the induced functor (Discrete J ⥤ C) ⥤ (Discrete J ⥤ D) is also a localization for W.functorCategory (Discrete J) if W contains identities.

Equations
  • One or more equations did not get rendered due to their size.