Documentation

Mathlib.CategoryTheory.Monoidal.Bimod

The category of bimodule objects over a pair of monoid objects. #

theorem id_tensor_π_preserves_coequalizer_inv_colimMap_desc {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] [CategoryTheory.MonoidalCategory C] [CategoryTheory.Limits.HasCoequalizers C] [(X : C) → CategoryTheory.Limits.PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (CategoryTheory.MonoidalCategory.tensorLeft X)] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (f : X Y) (g : X Y) (f' : X' Y') (g' : X' Y') (p : CategoryTheory.MonoidalCategory.tensorObj Z X X') (q : CategoryTheory.MonoidalCategory.tensorObj Z Y Y') (wf : CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.tensorHom (CategoryTheory.CategoryStruct.id Z) f) q = CategoryTheory.CategoryStruct.comp p f') (wg : CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.tensorHom (CategoryTheory.CategoryStruct.id Z) g) q = CategoryTheory.CategoryStruct.comp p g') (h : Y' Z') (wh : CategoryTheory.CategoryStruct.comp f' h = CategoryTheory.CategoryStruct.comp g' h) :
theorem π_tensor_id_preserves_coequalizer_inv_colimMap_desc {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] [CategoryTheory.MonoidalCategory C] [CategoryTheory.Limits.HasCoequalizers C] [(X : C) → CategoryTheory.Limits.PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (CategoryTheory.MonoidalCategory.tensorRight X)] {X : C} {Y : C} {Z : C} {X' : C} {Y' : C} {Z' : C} (f : X Y) (g : X Y) (f' : X' Y') (g' : X' Y') (p : CategoryTheory.MonoidalCategory.tensorObj X Z X') (q : CategoryTheory.MonoidalCategory.tensorObj Y Z Y') (wf : CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.tensorHom f (CategoryTheory.CategoryStruct.id Z)) q = CategoryTheory.CategoryStruct.comp p f') (wg : CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.tensorHom g (CategoryTheory.CategoryStruct.id Z)) q = CategoryTheory.CategoryStruct.comp p g') (h : Y' Z') (wh : CategoryTheory.CategoryStruct.comp f' h = CategoryTheory.CategoryStruct.comp g' h) :
structure Bimod {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] [CategoryTheory.MonoidalCategory C] (A : Mon_ C) (B : Mon_ C) :
Type (max u₁ v₁)

A bimodule object for a pair of monoid objects, all internal to some monoidal category.

Instances For
    theorem Bimod.Hom.ext {C : Type u₁} :
    ∀ {inst : CategoryTheory.Category.{v₁, u₁} C} {inst_1 : CategoryTheory.MonoidalCategory C} {A B : Mon_ C} {M N : Bimod A B} (x y : Bimod.Hom M N), x.hom = y.homx = y
    theorem Bimod.Hom.ext_iff {C : Type u₁} :
    ∀ {inst : CategoryTheory.Category.{v₁, u₁} C} {inst_1 : CategoryTheory.MonoidalCategory C} {A B : Mon_ C} {M N : Bimod A B} (x y : Bimod.Hom M N), x = y x.hom = y.hom
    structure Bimod.Hom {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] [CategoryTheory.MonoidalCategory C] {A : Mon_ C} {B : Mon_ C} (M : Bimod A B) (N : Bimod A B) :
    Type v₁

    A morphism of bimodule objects.

    Instances For

      The identity morphism on a bimodule object.

      Equations
      Instances For
        @[simp]
        theorem Bimod.comp_hom {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] [CategoryTheory.MonoidalCategory C] {A : Mon_ C} {B : Mon_ C} {M : Bimod A B} {N : Bimod A B} {O : Bimod A B} (f : Bimod.Hom M N) (g : Bimod.Hom N O) :
        def Bimod.comp {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] [CategoryTheory.MonoidalCategory C] {A : Mon_ C} {B : Mon_ C} {M : Bimod A B} {N : Bimod A B} {O : Bimod A B} (f : Bimod.Hom M N) (g : Bimod.Hom N O) :

        Composition of bimodule object morphisms.

        Equations
        Instances For
          Equations
          • Bimod.instCategoryBimod = CategoryTheory.Category.mk
          theorem Bimod.hom_ext {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] [CategoryTheory.MonoidalCategory C] {A : Mon_ C} {B : Mon_ C} {M : Bimod A B} {N : Bimod A B} (f : M N) (g : M N) (h : f.hom = g.hom) :
          f = g
          @[simp]
          theorem Bimod.comp_hom' {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] [CategoryTheory.MonoidalCategory C] {A : Mon_ C} {B : Mon_ C} {M : Bimod A B} {N : Bimod A B} {K : Bimod A B} (f : M N) (g : N K) :

          Construct an isomorphism of bimodules by giving an isomorphism between the underlying objects and checking compatibility with left and right actions only in the forward direction.

          Equations
          Instances For

            A monoid object as a bimodule over itself.

            Equations
            Instances For

              The forgetful functor from bimodule objects to the ambient category.

              Equations
              Instances For

                The underlying object of the tensor product of two bimodules.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For

                  Left action for the tensor product of two bimodules.

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For

                    Right action for the tensor product of two bimodules.

                    Equations
                    • One or more equations did not get rendered due to their size.
                    Instances For
                      @[simp]
                      theorem Bimod.tensorHom_hom {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] [CategoryTheory.MonoidalCategory C] [CategoryTheory.Limits.HasCoequalizers C] [(X : C) → CategoryTheory.Limits.PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (CategoryTheory.MonoidalCategory.tensorLeft X)] [(X : C) → CategoryTheory.Limits.PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (CategoryTheory.MonoidalCategory.tensorRight X)] {X : Mon_ C} {Y : Mon_ C} {Z : Mon_ C} {M₁ : Bimod X Y} {M₂ : Bimod X Y} {N₁ : Bimod Y Z} {N₂ : Bimod Y Z} (f : M₁ M₂) (g : N₁ N₂) :
                      (Bimod.tensorHom f g).hom = CategoryTheory.Limits.colimMap (CategoryTheory.Limits.parallelPairHom (CategoryTheory.MonoidalCategory.tensorHom M₁.actRight (CategoryTheory.CategoryStruct.id N₁.X)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.associator M₁.X Y.X N₁.X).hom (CategoryTheory.MonoidalCategory.tensorHom (CategoryTheory.CategoryStruct.id M₁.X) N₁.actLeft)) (CategoryTheory.MonoidalCategory.tensorHom M₂.actRight (CategoryTheory.CategoryStruct.id N₂.X)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.associator M₂.X Y.X N₂.X).hom (CategoryTheory.MonoidalCategory.tensorHom (CategoryTheory.CategoryStruct.id M₂.X) N₂.actLeft)) (CategoryTheory.MonoidalCategory.tensorHom (CategoryTheory.MonoidalCategory.tensorHom f.hom (CategoryTheory.CategoryStruct.id Y.X)) g.hom) (CategoryTheory.MonoidalCategory.tensorHom f.hom g.hom) (_ : CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.tensorHom M₁.actRight (CategoryTheory.CategoryStruct.id N₁.X)) (CategoryTheory.MonoidalCategory.tensorHom f.hom g.hom) = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.tensorHom (CategoryTheory.MonoidalCategory.tensorHom f.hom (CategoryTheory.CategoryStruct.id Y.X)) g.hom) (CategoryTheory.MonoidalCategory.tensorHom M₂.actRight (CategoryTheory.CategoryStruct.id N₂.X))) (_ : CategoryTheory.CategoryStruct.comp (CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.associator M₁.X Y.X N₁.X).hom (CategoryTheory.MonoidalCategory.tensorHom (CategoryTheory.CategoryStruct.id M₁.X) N₁.actLeft)) (CategoryTheory.MonoidalCategory.tensorHom f.hom g.hom) = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.tensorHom (CategoryTheory.MonoidalCategory.tensorHom f.hom (CategoryTheory.CategoryStruct.id Y.X)) g.hom) (CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.associator M₂.X Y.X N₂.X).hom (CategoryTheory.MonoidalCategory.tensorHom (CategoryTheory.CategoryStruct.id M₂.X) N₂.actLeft))))

                      Tensor product of two morphisms of bimodule objects.

                      Equations
                      • One or more equations did not get rendered due to their size.
                      Instances For

                        An auxiliary morphism for the definition of the underlying morphism of the forward component of the associator isomorphism.

                        Equations
                        • One or more equations did not get rendered due to their size.
                        Instances For

                          The underlying morphism of the forward component of the associator isomorphism.

                          Equations
                          • One or more equations did not get rendered due to their size.
                          Instances For

                            An auxiliary morphism for the definition of the underlying morphism of the inverse component of the associator isomorphism.

                            Equations
                            • One or more equations did not get rendered due to their size.
                            Instances For

                              The underlying morphism of the inverse component of the associator isomorphism.

                              Equations
                              • One or more equations did not get rendered due to their size.
                              Instances For

                                The underlying morphism of the forward component of the left unitor isomorphism.

                                Equations
                                • One or more equations did not get rendered due to their size.
                                Instances For

                                  The underlying morphism of the inverse component of the left unitor isomorphism.

                                  Equations
                                  • One or more equations did not get rendered due to their size.
                                  Instances For

                                    The underlying morphism of the forward component of the right unitor isomorphism.

                                    Equations
                                    • One or more equations did not get rendered due to their size.
                                    Instances For

                                      The underlying morphism of the inverse component of the right unitor isomorphism.

                                      Equations
                                      • One or more equations did not get rendered due to their size.
                                      Instances For

                                        The bicategory of algebras (monoids) and bimodules, all internal to some monoidal category.

                                        Equations
                                        • One or more equations did not get rendered due to their size.
                                        Instances For