Monoidal natural transformations #
Natural transformations between (lax) monoidal functors must satisfy
an additional compatibility relation with the tensorators:
F.μ X Y ≫ app (X ⊗ Y) = (app X ⊗ app Y) ≫ G.μ X Y
.
(Lax) monoidal functors between a fixed pair of monoidal categories themselves form a category.
A monoidal natural transformation is a natural transformation between (lax) monoidal functors
additionally satisfying:
F.μ X Y ≫ app (X ⊗ Y) = (app X ⊗ app Y) ≫ G.μ X Y
- app : (X : C) → F.toPrefunctor.obj X ⟶ G.toPrefunctor.obj X
- naturality : ∀ ⦃X Y : C⦄ (f : X ⟶ Y), CategoryTheory.CategoryStruct.comp (F.toPrefunctor.map f) (self.toNatTrans.app Y) = CategoryTheory.CategoryStruct.comp (self.toNatTrans.app X) (G.toPrefunctor.map f)
- unit : CategoryTheory.CategoryStruct.comp F.ε (self.toNatTrans.app (𝟙_ C)) = G.ε
The unit condition for a monoidal natural transformation.
- tensor : ∀ (X Y : C), CategoryTheory.CategoryStruct.comp (F.μ X Y) (self.toNatTrans.app (CategoryTheory.MonoidalCategory.tensorObj X Y)) = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.tensorHom (self.toNatTrans.app X) (self.toNatTrans.app Y)) (G.μ X Y)
The tensor condition for a monoidal natural transformation.
Instances For
The identity monoidal natural transformation.
Equations
- CategoryTheory.MonoidalNatTrans.id F = let src := CategoryTheory.CategoryStruct.id F.toFunctor; CategoryTheory.MonoidalNatTrans.mk src
Instances For
Equations
Vertical composition of monoidal natural transformations.
Equations
- CategoryTheory.MonoidalNatTrans.vcomp α β = let src := CategoryTheory.NatTrans.vcomp α.toNatTrans β.toNatTrans; CategoryTheory.MonoidalNatTrans.mk src
Instances For
Equations
- CategoryTheory.MonoidalNatTrans.categoryLaxMonoidalFunctor = CategoryTheory.Category.mk
Equations
- CategoryTheory.MonoidalNatTrans.categoryMonoidalFunctor = CategoryTheory.InducedCategory.category CategoryTheory.MonoidalFunctor.toLaxMonoidalFunctor
Horizontal composition of monoidal natural transformations.
Equations
- CategoryTheory.MonoidalNatTrans.hcomp α β = let src := α.toNatTrans ◫ β.toNatTrans; CategoryTheory.MonoidalNatTrans.mk src
Instances For
The cartesian product of two monoidal natural transformations is monoidal.
Equations
- CategoryTheory.MonoidalNatTrans.prod α β = CategoryTheory.MonoidalNatTrans.mk (CategoryTheory.NatTrans.mk fun (X : C) => (α.toNatTrans.app X, β.toNatTrans.app X))
Instances For
Construct a monoidal natural isomorphism from object level isomorphisms, and the monoidal naturality in the forward direction.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- (_ : CategoryTheory.IsIso α) = (_ : CategoryTheory.IsIso α)
The unit of a monoidal equivalence can be upgraded to a monoidal natural transformation.
Equations
- CategoryTheory.monoidalUnit F = let e := CategoryTheory.Functor.asEquivalence F.toFunctor; CategoryTheory.MonoidalNatTrans.mk e.unit
Instances For
Equations
- (_ : CategoryTheory.IsIso (CategoryTheory.monoidalUnit F)) = (_ : CategoryTheory.IsIso (CategoryTheory.monoidalUnit F))
The counit of a monoidal equivalence can be upgraded to a monoidal natural transformation.
Equations
- CategoryTheory.monoidalCounit F = let e := CategoryTheory.Functor.asEquivalence F.toFunctor; CategoryTheory.MonoidalNatTrans.mk e.counit