Documentation

Mathlib.CategoryTheory.Monoidal.OfHasFiniteProducts

The natural monoidal structure on any category with finite (co)products. #

A category with a monoidal structure provided in this way is sometimes called a (co)cartesian category, although this is also sometimes used to mean a finitely complete category. (See .)

As this works with either products or coproducts, and sometimes we want to think of a different monoidal structure entirely, we don't set up either construct as an instance.

Implementation #

We had previously chosen to rely on HasTerminal and HasBinaryProducts instead of HasBinaryProducts, because we were later relying on the definitional form of the tensor product. Now that has_limit has been refactored to be a Prop, this issue is irrelevant and we could simplify the construction here.

See CategoryTheory.monoidalOfChosenFiniteProducts for a variant of this construction which allows specifying a particular choice of terminal object and binary products.

A category with a terminal object and binary products has a natural monoidal structure.

Equations
Instances For
    theorem CategoryTheory.monoidalOfHasFiniteProducts.associator_hom (C : Type u) [CategoryTheory.Category.{v, u} C] [CategoryTheory.Limits.HasTerminal C] [CategoryTheory.Limits.HasBinaryProducts C] (X : C) (Y : C) (Z : C) :
    (CategoryTheory.MonoidalCategory.associator X Y Z).hom = CategoryTheory.Limits.prod.lift (CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.prod.fst CategoryTheory.Limits.prod.fst) (CategoryTheory.Limits.prod.lift (CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.prod.fst CategoryTheory.Limits.prod.snd) CategoryTheory.Limits.prod.snd)
    theorem CategoryTheory.monoidalOfHasFiniteProducts.associator_inv (C : Type u) [CategoryTheory.Category.{v, u} C] [CategoryTheory.Limits.HasTerminal C] [CategoryTheory.Limits.HasBinaryProducts C] (X : C) (Y : C) (Z : C) :
    (CategoryTheory.MonoidalCategory.associator X Y Z).inv = CategoryTheory.Limits.prod.lift (CategoryTheory.Limits.prod.lift CategoryTheory.Limits.prod.fst (CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.prod.snd CategoryTheory.Limits.prod.fst)) (CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.prod.snd CategoryTheory.Limits.prod.snd)

    The monoidal structure coming from finite products is symmetric.

    Equations
    Instances For

      A category with an initial object and binary coproducts has a natural monoidal structure.

      Equations
      Instances For
        theorem CategoryTheory.monoidalOfHasFiniteCoproducts.associator_hom (C : Type u) [CategoryTheory.Category.{v, u} C] [CategoryTheory.Limits.HasInitial C] [CategoryTheory.Limits.HasBinaryCoproducts C] (X : C) (Y : C) (Z : C) :
        (CategoryTheory.MonoidalCategory.associator X Y Z).hom = CategoryTheory.Limits.coprod.desc (CategoryTheory.Limits.coprod.desc CategoryTheory.Limits.coprod.inl (CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.coprod.inl CategoryTheory.Limits.coprod.inr)) (CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.coprod.inr CategoryTheory.Limits.coprod.inr)
        theorem CategoryTheory.monoidalOfHasFiniteCoproducts.associator_inv (C : Type u) [CategoryTheory.Category.{v, u} C] [CategoryTheory.Limits.HasInitial C] [CategoryTheory.Limits.HasBinaryCoproducts C] (X : C) (Y : C) (Z : C) :
        (CategoryTheory.MonoidalCategory.associator X Y Z).inv = CategoryTheory.Limits.coprod.desc (CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.coprod.inl CategoryTheory.Limits.coprod.inl) (CategoryTheory.Limits.coprod.desc (CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.coprod.inr CategoryTheory.Limits.coprod.inl) CategoryTheory.Limits.coprod.inr)

        The monoidal structure coming from finite coproducts is symmetric.

        Equations
        Instances For