Documentation

Mathlib.CategoryTheory.Monoidal.Rigid.OfEquivalence

Transport rigid structures over a monoidal equivalence. #

def CategoryTheory.exactPairingOfFaithful {C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.MonoidalCategory C] [CategoryTheory.MonoidalCategory D] (F : CategoryTheory.MonoidalFunctor C D) [CategoryTheory.Faithful F.toFunctor] {X : C} {Y : C} (eval : CategoryTheory.MonoidalCategory.tensorObj Y X 𝟙_ C) (coeval : 𝟙_ C CategoryTheory.MonoidalCategory.tensorObj X Y) [CategoryTheory.ExactPairing (F.toPrefunctor.obj X) (F.toPrefunctor.obj Y)] (map_eval : F.toPrefunctor.map eval = CategoryTheory.CategoryStruct.comp (CategoryTheory.inv (F.toLaxMonoidalFunctorY X)) (CategoryTheory.CategoryStruct.comp (ε_ (F.toPrefunctor.obj X) (F.toPrefunctor.obj Y)) F)) (map_coeval : F.toPrefunctor.map coeval = CategoryTheory.CategoryStruct.comp (CategoryTheory.inv F) (CategoryTheory.CategoryStruct.comp (η_ (F.toPrefunctor.obj X) (F.toPrefunctor.obj Y)) (F.toLaxMonoidalFunctorX Y))) :

Given candidate data for an exact pairing, which is sent by a faithful monoidal functor to an exact pairing, the equations holds automatically.

Equations
Instances For

    Given a pair of objects which are sent by a fully faithful functor to a pair of objects with an exact pairing, we get an exact pairing.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For