Preadditive structure on algebras over a monad #
If C
is a preadditive category and T
is an additive monad on C
then Algebra T
is also
preadditive. Dually, if U
is an additive comonad on C
then Coalgebra U
is preadditive as well.
@[simp]
theorem
CategoryTheory.Monad.algebraPreadditive_homGroup_zsmul_f
(C : Type u₁)
[CategoryTheory.Category.{v₁, u₁} C]
[CategoryTheory.Preadditive C]
(T : CategoryTheory.Monad C)
[CategoryTheory.Functor.Additive T.toFunctor]
(F : CategoryTheory.Monad.Algebra T)
(G : CategoryTheory.Monad.Algebra T)
(r : ℤ)
(α : F ⟶ G)
:
@[simp]
theorem
CategoryTheory.Monad.algebraPreadditive_homGroup_sub_f
(C : Type u₁)
[CategoryTheory.Category.{v₁, u₁} C]
[CategoryTheory.Preadditive C]
(T : CategoryTheory.Monad C)
[CategoryTheory.Functor.Additive T.toFunctor]
(F : CategoryTheory.Monad.Algebra T)
(G : CategoryTheory.Monad.Algebra T)
(α : F ⟶ G)
(β : F ⟶ G)
:
@[simp]
theorem
CategoryTheory.Monad.algebraPreadditive_homGroup_neg_f
(C : Type u₁)
[CategoryTheory.Category.{v₁, u₁} C]
[CategoryTheory.Preadditive C]
(T : CategoryTheory.Monad C)
[CategoryTheory.Functor.Additive T.toFunctor]
(F : CategoryTheory.Monad.Algebra T)
(G : CategoryTheory.Monad.Algebra T)
(α : F ⟶ G)
:
@[simp]
theorem
CategoryTheory.Monad.algebraPreadditive_homGroup_add_f
(C : Type u₁)
[CategoryTheory.Category.{v₁, u₁} C]
[CategoryTheory.Preadditive C]
(T : CategoryTheory.Monad C)
[CategoryTheory.Functor.Additive T.toFunctor]
(F : CategoryTheory.Monad.Algebra T)
(G : CategoryTheory.Monad.Algebra T)
(α : F ⟶ G)
(β : F ⟶ G)
:
@[simp]
theorem
CategoryTheory.Monad.algebraPreadditive_homGroup_zero_f
(C : Type u₁)
[CategoryTheory.Category.{v₁, u₁} C]
[CategoryTheory.Preadditive C]
(T : CategoryTheory.Monad C)
[CategoryTheory.Functor.Additive T.toFunctor]
(F : CategoryTheory.Monad.Algebra T)
(G : CategoryTheory.Monad.Algebra T)
:
0.f = 0
@[simp]
theorem
CategoryTheory.Monad.algebraPreadditive_homGroup_nsmul_f
(C : Type u₁)
[CategoryTheory.Category.{v₁, u₁} C]
[CategoryTheory.Preadditive C]
(T : CategoryTheory.Monad C)
[CategoryTheory.Functor.Additive T.toFunctor]
(F : CategoryTheory.Monad.Algebra T)
(G : CategoryTheory.Monad.Algebra T)
(n : ℕ)
(α : F ⟶ G)
:
instance
CategoryTheory.Monad.algebraPreadditive
(C : Type u₁)
[CategoryTheory.Category.{v₁, u₁} C]
[CategoryTheory.Preadditive C]
(T : CategoryTheory.Monad C)
[CategoryTheory.Functor.Additive T.toFunctor]
:
The category of algebras over an additive monad on a preadditive category is preadditive.
Equations
- CategoryTheory.Monad.algebraPreadditive C T = CategoryTheory.Preadditive.mk
instance
CategoryTheory.Monad.forget_additive
(C : Type u₁)
[CategoryTheory.Category.{v₁, u₁} C]
[CategoryTheory.Preadditive C]
(T : CategoryTheory.Monad C)
[CategoryTheory.Functor.Additive T.toFunctor]
:
Equations
@[simp]
theorem
CategoryTheory.Comonad.coalgebraPreadditive_homGroup_neg_f
(C : Type u₁)
[CategoryTheory.Category.{v₁, u₁} C]
[CategoryTheory.Preadditive C]
(U : CategoryTheory.Comonad C)
[CategoryTheory.Functor.Additive U.toFunctor]
(F : CategoryTheory.Comonad.Coalgebra U)
(G : CategoryTheory.Comonad.Coalgebra U)
(α : F ⟶ G)
:
@[simp]
theorem
CategoryTheory.Comonad.coalgebraPreadditive_homGroup_zsmul_f
(C : Type u₁)
[CategoryTheory.Category.{v₁, u₁} C]
[CategoryTheory.Preadditive C]
(U : CategoryTheory.Comonad C)
[CategoryTheory.Functor.Additive U.toFunctor]
(F : CategoryTheory.Comonad.Coalgebra U)
(G : CategoryTheory.Comonad.Coalgebra U)
(r : ℤ)
(α : F ⟶ G)
:
@[simp]
theorem
CategoryTheory.Comonad.coalgebraPreadditive_homGroup_sub_f
(C : Type u₁)
[CategoryTheory.Category.{v₁, u₁} C]
[CategoryTheory.Preadditive C]
(U : CategoryTheory.Comonad C)
[CategoryTheory.Functor.Additive U.toFunctor]
(F : CategoryTheory.Comonad.Coalgebra U)
(G : CategoryTheory.Comonad.Coalgebra U)
(α : F ⟶ G)
(β : F ⟶ G)
:
@[simp]
theorem
CategoryTheory.Comonad.coalgebraPreadditive_homGroup_nsmul_f
(C : Type u₁)
[CategoryTheory.Category.{v₁, u₁} C]
[CategoryTheory.Preadditive C]
(U : CategoryTheory.Comonad C)
[CategoryTheory.Functor.Additive U.toFunctor]
(F : CategoryTheory.Comonad.Coalgebra U)
(G : CategoryTheory.Comonad.Coalgebra U)
(n : ℕ)
(α : F ⟶ G)
:
@[simp]
theorem
CategoryTheory.Comonad.coalgebraPreadditive_homGroup_add_f
(C : Type u₁)
[CategoryTheory.Category.{v₁, u₁} C]
[CategoryTheory.Preadditive C]
(U : CategoryTheory.Comonad C)
[CategoryTheory.Functor.Additive U.toFunctor]
(F : CategoryTheory.Comonad.Coalgebra U)
(G : CategoryTheory.Comonad.Coalgebra U)
(α : F ⟶ G)
(β : F ⟶ G)
:
@[simp]
theorem
CategoryTheory.Comonad.coalgebraPreadditive_homGroup_zero_f
(C : Type u₁)
[CategoryTheory.Category.{v₁, u₁} C]
[CategoryTheory.Preadditive C]
(U : CategoryTheory.Comonad C)
[CategoryTheory.Functor.Additive U.toFunctor]
(F : CategoryTheory.Comonad.Coalgebra U)
(G : CategoryTheory.Comonad.Coalgebra U)
:
0.f = 0
instance
CategoryTheory.Comonad.coalgebraPreadditive
(C : Type u₁)
[CategoryTheory.Category.{v₁, u₁} C]
[CategoryTheory.Preadditive C]
(U : CategoryTheory.Comonad C)
[CategoryTheory.Functor.Additive U.toFunctor]
:
The category of coalgebras over an additive comonad on a preadditive category is preadditive.
Equations
- CategoryTheory.Comonad.coalgebraPreadditive C U = CategoryTheory.Preadditive.mk
instance
CategoryTheory.Comonad.forget_additive
(C : Type u₁)
[CategoryTheory.Category.{v₁, u₁} C]
[CategoryTheory.Preadditive C]
(U : CategoryTheory.Comonad C)
[CategoryTheory.Functor.Additive U.toFunctor]
: