Preadditive structure on functor categories #
If C
and D
are categories and D
is preadditive,
then C ⥤ D
is also preadditive.
instance
CategoryTheory.functorCategoryPreadditive
{C : Type u_1}
{D : Type u_2}
[CategoryTheory.Category.{u_3, u_1} C]
[CategoryTheory.Category.{u_4, u_2} D]
[CategoryTheory.Preadditive D]
:
Equations
- CategoryTheory.functorCategoryPreadditive = CategoryTheory.Preadditive.mk
@[simp]
theorem
CategoryTheory.NatTrans.appHom_apply
{C : Type u_1}
{D : Type u_2}
[CategoryTheory.Category.{u_3, u_1} C]
[CategoryTheory.Category.{u_4, u_2} D]
[CategoryTheory.Preadditive D]
{F : CategoryTheory.Functor C D}
{G : CategoryTheory.Functor C D}
(X : C)
(α : F ⟶ G)
:
(CategoryTheory.NatTrans.appHom X) α = α.app X
def
CategoryTheory.NatTrans.appHom
{C : Type u_1}
{D : Type u_2}
[CategoryTheory.Category.{u_3, u_1} C]
[CategoryTheory.Category.{u_4, u_2} D]
[CategoryTheory.Preadditive D]
{F : CategoryTheory.Functor C D}
{G : CategoryTheory.Functor C D}
(X : C)
:
Application of a natural transformation at a fixed object, as group homomorphism
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.NatTrans.app_zero
{C : Type u_1}
{D : Type u_2}
[CategoryTheory.Category.{u_4, u_1} C]
[CategoryTheory.Category.{u_3, u_2} D]
[CategoryTheory.Preadditive D]
{F : CategoryTheory.Functor C D}
{G : CategoryTheory.Functor C D}
(X : C)
:
0.app X = 0
@[simp]
theorem
CategoryTheory.NatTrans.app_add
{C : Type u_1}
{D : Type u_2}
[CategoryTheory.Category.{u_4, u_1} C]
[CategoryTheory.Category.{u_3, u_2} D]
[CategoryTheory.Preadditive D]
{F : CategoryTheory.Functor C D}
{G : CategoryTheory.Functor C D}
(X : C)
(α : F ⟶ G)
(β : F ⟶ G)
:
@[simp]
theorem
CategoryTheory.NatTrans.app_sub
{C : Type u_1}
{D : Type u_2}
[CategoryTheory.Category.{u_4, u_1} C]
[CategoryTheory.Category.{u_3, u_2} D]
[CategoryTheory.Preadditive D]
{F : CategoryTheory.Functor C D}
{G : CategoryTheory.Functor C D}
(X : C)
(α : F ⟶ G)
(β : F ⟶ G)
:
@[simp]
theorem
CategoryTheory.NatTrans.app_neg
{C : Type u_1}
{D : Type u_2}
[CategoryTheory.Category.{u_4, u_1} C]
[CategoryTheory.Category.{u_3, u_2} D]
[CategoryTheory.Preadditive D]
{F : CategoryTheory.Functor C D}
{G : CategoryTheory.Functor C D}
(X : C)
(α : F ⟶ G)
:
@[simp]
theorem
CategoryTheory.NatTrans.app_nsmul
{C : Type u_1}
{D : Type u_2}
[CategoryTheory.Category.{u_4, u_1} C]
[CategoryTheory.Category.{u_3, u_2} D]
[CategoryTheory.Preadditive D]
{F : CategoryTheory.Functor C D}
{G : CategoryTheory.Functor C D}
(X : C)
(α : F ⟶ G)
(n : ℕ)
:
@[simp]
theorem
CategoryTheory.NatTrans.app_zsmul
{C : Type u_1}
{D : Type u_2}
[CategoryTheory.Category.{u_4, u_1} C]
[CategoryTheory.Category.{u_3, u_2} D]
[CategoryTheory.Preadditive D]
{F : CategoryTheory.Functor C D}
{G : CategoryTheory.Functor C D}
(X : C)
(α : F ⟶ G)
(n : ℤ)
:
@[simp]
theorem
CategoryTheory.NatTrans.app_sum
{C : Type u_1}
{D : Type u_2}
[CategoryTheory.Category.{u_5, u_1} C]
[CategoryTheory.Category.{u_4, u_2} D]
[CategoryTheory.Preadditive D]
{F : CategoryTheory.Functor C D}
{G : CategoryTheory.Functor C D}
{ι : Type u_3}
(s : Finset ι)
(X : C)
(α : ι → (F ⟶ G))
:
(Finset.sum s fun (i : ι) => α i).app X = Finset.sum s fun (i : ι) => (α i).app X