Documentation

Mathlib.CategoryTheory.Products.Bifunctor

Lemmas about functors out of product categories. #

@[simp]
theorem CategoryTheory.Bifunctor.diagonal {C : Type u₁} {D : Type u₂} {E : Type u₃} [CategoryTheory.Category.{v₁, u₁} C] [CategoryTheory.Category.{v₂, u₂} D] [CategoryTheory.Category.{v₃, u₃} E] (F : CategoryTheory.Functor (C × D) E) (X : C) (X' : C) (f : X X') (Y : D) (Y' : D) (g : Y Y') :
CategoryTheory.CategoryStruct.comp (F.toPrefunctor.map (CategoryTheory.CategoryStruct.id X, g)) (F.toPrefunctor.map (f, CategoryTheory.CategoryStruct.id Y')) = F.toPrefunctor.map (f, g)
@[simp]
theorem CategoryTheory.Bifunctor.diagonal' {C : Type u₁} {D : Type u₂} {E : Type u₃} [CategoryTheory.Category.{v₁, u₁} C] [CategoryTheory.Category.{v₂, u₂} D] [CategoryTheory.Category.{v₃, u₃} E] (F : CategoryTheory.Functor (C × D) E) (X : C) (X' : C) (f : X X') (Y : D) (Y' : D) (g : Y Y') :
CategoryTheory.CategoryStruct.comp (F.toPrefunctor.map (f, CategoryTheory.CategoryStruct.id Y)) (F.toPrefunctor.map (CategoryTheory.CategoryStruct.id X', g)) = F.toPrefunctor.map (f, g)