Connections between the regular, extensive and coherent topologies #
This file compares the regular, extensive and coherent topologies.
Main results #
-
instance : Precoherent C
givenPreregular C
andFinitaryPreExtensive C
. -
extensive_union_regular_generates_coherent
: the union of the regular and extensive coverages generates the coherent topology onC
ifC
is precoherent, preextensive and preregular.
instance
CategoryTheory.instPreregular
(C : Type u_1)
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Precoherent C]
[CategoryTheory.Limits.HasFiniteCoproducts C]
:
Equations
- (_ : CategoryTheory.Preregular C) = (_ : CategoryTheory.Preregular C)
theorem
CategoryTheory.effectiveEpi_desc_iff_effectiveEpiFamily
(C : Type u_1)
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.FinitaryPreExtensive C]
{α : Type}
[Finite α]
{B : C}
(X : α → C)
(π : (a : α) → X a ⟶ B)
:
instance
CategoryTheory.instPrecoherent
(C : Type u_1)
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.FinitaryPreExtensive C]
[CategoryTheory.Preregular C]
:
Equations
- (_ : CategoryTheory.Precoherent C) = (_ : CategoryTheory.Precoherent C)
theorem
CategoryTheory.extensive_regular_generate_coherent
(C : Type u_1)
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Preregular C]
[CategoryTheory.FinitaryPreExtensive C]
:
The union of the extensive and regular coverages generates the coherent topology on C
.