In this file, we prove that the plus functor is compatible with functors which preserve the correct limits and colimits.
See CategoryTheory/Sites/CompatibleSheafification
for the compatibility
of sheafification, which follows easily from the content in this file.
def
CategoryTheory.GrothendieckTopology.diagramCompIso
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(J : CategoryTheory.GrothendieckTopology C)
{D : Type w₁}
[CategoryTheory.Category.{max v u, w₁} D]
{E : Type w₂}
[CategoryTheory.Category.{max v u, w₂} E]
(F : CategoryTheory.Functor D E)
[∀ (α β : Type (max v u)) (fst snd : β → α),
CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) D]
[∀ (α β : Type (max v u)) (fst snd : β → α),
CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) E]
[(X : C) →
(W : CategoryTheory.GrothendieckTopology.Cover J X) →
(P : CategoryTheory.Functor Cᵒᵖ D) →
CategoryTheory.Limits.PreservesLimit
(CategoryTheory.Limits.MulticospanIndex.multicospan (CategoryTheory.GrothendieckTopology.Cover.index W P)) F]
(P : CategoryTheory.Functor Cᵒᵖ D)
(X : C)
:
The diagram used to define P⁺
, composed with F
, is isomorphic
to the diagram used to define P ⋙ F
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.GrothendieckTopology.diagramCompIso_hom_ι_assoc
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(J : CategoryTheory.GrothendieckTopology C)
{D : Type w₁}
[CategoryTheory.Category.{max v u, w₁} D]
{E : Type w₂}
[CategoryTheory.Category.{max v u, w₂} E]
(F : CategoryTheory.Functor D E)
[∀ (α β : Type (max v u)) (fst snd : β → α),
CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) D]
[∀ (α β : Type (max v u)) (fst snd : β → α),
CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) E]
[(X : C) →
(W : CategoryTheory.GrothendieckTopology.Cover J X) →
(P : CategoryTheory.Functor Cᵒᵖ D) →
CategoryTheory.Limits.PreservesLimit
(CategoryTheory.Limits.MulticospanIndex.multicospan (CategoryTheory.GrothendieckTopology.Cover.index W P)) F]
(P : CategoryTheory.Functor Cᵒᵖ D)
(X : C)
(W : (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ)
(i : CategoryTheory.GrothendieckTopology.Cover.Arrow W.unop)
{Z : E}
(h : (CategoryTheory.GrothendieckTopology.Cover.index W.unop (CategoryTheory.Functor.comp P F)).left i ⟶ Z)
:
CategoryTheory.CategoryStruct.comp ((CategoryTheory.GrothendieckTopology.diagramCompIso J F P X).hom.app W)
(CategoryTheory.CategoryStruct.comp
(CategoryTheory.Limits.Multiequalizer.ι
(CategoryTheory.GrothendieckTopology.Cover.index W.unop (CategoryTheory.Functor.comp P F)) i)
h) = CategoryTheory.CategoryStruct.comp
(F.toPrefunctor.map
(CategoryTheory.Limits.Multiequalizer.ι (CategoryTheory.GrothendieckTopology.Cover.index W.unop P) i))
h
@[simp]
theorem
CategoryTheory.GrothendieckTopology.diagramCompIso_hom_ι
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(J : CategoryTheory.GrothendieckTopology C)
{D : Type w₁}
[CategoryTheory.Category.{max v u, w₁} D]
{E : Type w₂}
[CategoryTheory.Category.{max v u, w₂} E]
(F : CategoryTheory.Functor D E)
[∀ (α β : Type (max v u)) (fst snd : β → α),
CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) D]
[∀ (α β : Type (max v u)) (fst snd : β → α),
CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) E]
[(X : C) →
(W : CategoryTheory.GrothendieckTopology.Cover J X) →
(P : CategoryTheory.Functor Cᵒᵖ D) →
CategoryTheory.Limits.PreservesLimit
(CategoryTheory.Limits.MulticospanIndex.multicospan (CategoryTheory.GrothendieckTopology.Cover.index W P)) F]
(P : CategoryTheory.Functor Cᵒᵖ D)
(X : C)
(W : (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ)
(i : CategoryTheory.GrothendieckTopology.Cover.Arrow W.unop)
:
CategoryTheory.CategoryStruct.comp ((CategoryTheory.GrothendieckTopology.diagramCompIso J F P X).hom.app W)
(CategoryTheory.Limits.Multiequalizer.ι
(CategoryTheory.GrothendieckTopology.Cover.index W.unop (CategoryTheory.Functor.comp P F)) i) = F.toPrefunctor.map
(CategoryTheory.Limits.Multiequalizer.ι (CategoryTheory.GrothendieckTopology.Cover.index W.unop P) i)
def
CategoryTheory.GrothendieckTopology.plusCompIso
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(J : CategoryTheory.GrothendieckTopology C)
{D : Type w₁}
[CategoryTheory.Category.{max v u, w₁} D]
{E : Type w₂}
[CategoryTheory.Category.{max v u, w₂} E]
(F : CategoryTheory.Functor D E)
[∀ (α β : Type (max v u)) (fst snd : β → α),
CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) D]
[∀ (α β : Type (max v u)) (fst snd : β → α),
CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) E]
[(X : C) →
(W : CategoryTheory.GrothendieckTopology.Cover J X) →
(P : CategoryTheory.Functor Cᵒᵖ D) →
CategoryTheory.Limits.PreservesLimit
(CategoryTheory.Limits.MulticospanIndex.multicospan (CategoryTheory.GrothendieckTopology.Cover.index W P)) F]
(P : CategoryTheory.Functor Cᵒᵖ D)
[∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ D]
[∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ E]
[(X : C) → CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ F]
:
The isomorphism between P⁺ ⋙ F
and (P ⋙ F)⁺
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.GrothendieckTopology.ι_plusCompIso_hom_assoc
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(J : CategoryTheory.GrothendieckTopology C)
{D : Type w₁}
[CategoryTheory.Category.{max v u, w₁} D]
{E : Type w₂}
[CategoryTheory.Category.{max v u, w₂} E]
(F : CategoryTheory.Functor D E)
[∀ (α β : Type (max v u)) (fst snd : β → α),
CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) D]
[∀ (α β : Type (max v u)) (fst snd : β → α),
CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) E]
[(X : C) →
(W : CategoryTheory.GrothendieckTopology.Cover J X) →
(P : CategoryTheory.Functor Cᵒᵖ D) →
CategoryTheory.Limits.PreservesLimit
(CategoryTheory.Limits.MulticospanIndex.multicospan (CategoryTheory.GrothendieckTopology.Cover.index W P)) F]
(P : CategoryTheory.Functor Cᵒᵖ D)
[∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ D]
[∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ E]
[(X : C) → CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ F]
(X : Cᵒᵖ)
(W : (CategoryTheory.GrothendieckTopology.Cover J X.unop)ᵒᵖ)
{Z : E}
(h : (CategoryTheory.GrothendieckTopology.plusObj J (CategoryTheory.Functor.comp P F)).toPrefunctor.obj X ⟶ Z)
:
CategoryTheory.CategoryStruct.comp
(F.toPrefunctor.map (CategoryTheory.Limits.colimit.ι (CategoryTheory.GrothendieckTopology.diagram J P X.unop) W))
(CategoryTheory.CategoryStruct.comp ((CategoryTheory.GrothendieckTopology.plusCompIso J F P).hom.app X) h) = CategoryTheory.CategoryStruct.comp ((CategoryTheory.GrothendieckTopology.diagramCompIso J F P X.unop).hom.app W)
(CategoryTheory.CategoryStruct.comp
(CategoryTheory.Limits.colimit.ι
(CategoryTheory.GrothendieckTopology.diagram J (CategoryTheory.Functor.comp P F) X.unop) W)
h)
@[simp]
theorem
CategoryTheory.GrothendieckTopology.ι_plusCompIso_hom
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(J : CategoryTheory.GrothendieckTopology C)
{D : Type w₁}
[CategoryTheory.Category.{max v u, w₁} D]
{E : Type w₂}
[CategoryTheory.Category.{max v u, w₂} E]
(F : CategoryTheory.Functor D E)
[∀ (α β : Type (max v u)) (fst snd : β → α),
CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) D]
[∀ (α β : Type (max v u)) (fst snd : β → α),
CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) E]
[(X : C) →
(W : CategoryTheory.GrothendieckTopology.Cover J X) →
(P : CategoryTheory.Functor Cᵒᵖ D) →
CategoryTheory.Limits.PreservesLimit
(CategoryTheory.Limits.MulticospanIndex.multicospan (CategoryTheory.GrothendieckTopology.Cover.index W P)) F]
(P : CategoryTheory.Functor Cᵒᵖ D)
[∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ D]
[∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ E]
[(X : C) → CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ F]
(X : Cᵒᵖ)
(W : (CategoryTheory.GrothendieckTopology.Cover J X.unop)ᵒᵖ)
:
CategoryTheory.CategoryStruct.comp
(F.toPrefunctor.map (CategoryTheory.Limits.colimit.ι (CategoryTheory.GrothendieckTopology.diagram J P X.unop) W))
((CategoryTheory.GrothendieckTopology.plusCompIso J F P).hom.app X) = CategoryTheory.CategoryStruct.comp ((CategoryTheory.GrothendieckTopology.diagramCompIso J F P X.unop).hom.app W)
(CategoryTheory.Limits.colimit.ι
(CategoryTheory.GrothendieckTopology.diagram J (CategoryTheory.Functor.comp P F) X.unop) W)
@[simp]
theorem
CategoryTheory.GrothendieckTopology.plusCompIso_whiskerLeft_assoc
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(J : CategoryTheory.GrothendieckTopology C)
{D : Type w₁}
[CategoryTheory.Category.{max v u, w₁} D]
{E : Type w₂}
[CategoryTheory.Category.{max v u, w₂} E]
[∀ (α β : Type (max v u)) (fst snd : β → α),
CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) D]
[∀ (α β : Type (max v u)) (fst snd : β → α),
CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) E]
[∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ D]
[∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ E]
{F : CategoryTheory.Functor D E}
{G : CategoryTheory.Functor D E}
(η : F ⟶ G)
(P : CategoryTheory.Functor Cᵒᵖ D)
[(X : C) → CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ F]
[(X : C) →
(W : CategoryTheory.GrothendieckTopology.Cover J X) →
(P : CategoryTheory.Functor Cᵒᵖ D) →
CategoryTheory.Limits.PreservesLimit
(CategoryTheory.Limits.MulticospanIndex.multicospan (CategoryTheory.GrothendieckTopology.Cover.index W P)) F]
[(X : C) → CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ G]
[(X : C) →
(W : CategoryTheory.GrothendieckTopology.Cover J X) →
(P : CategoryTheory.Functor Cᵒᵖ D) →
CategoryTheory.Limits.PreservesLimit
(CategoryTheory.Limits.MulticospanIndex.multicospan (CategoryTheory.GrothendieckTopology.Cover.index W P)) G]
{Z : CategoryTheory.Functor Cᵒᵖ E}
(h : CategoryTheory.GrothendieckTopology.plusObj J (CategoryTheory.Functor.comp P G) ⟶ Z)
:
CategoryTheory.CategoryStruct.comp (CategoryTheory.whiskerLeft (CategoryTheory.GrothendieckTopology.plusObj J P) η)
(CategoryTheory.CategoryStruct.comp (CategoryTheory.GrothendieckTopology.plusCompIso J G P).hom h) = CategoryTheory.CategoryStruct.comp (CategoryTheory.GrothendieckTopology.plusCompIso J F P).hom
(CategoryTheory.CategoryStruct.comp (CategoryTheory.GrothendieckTopology.plusMap J (CategoryTheory.whiskerLeft P η))
h)
@[simp]
theorem
CategoryTheory.GrothendieckTopology.plusCompIso_whiskerLeft
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(J : CategoryTheory.GrothendieckTopology C)
{D : Type w₁}
[CategoryTheory.Category.{max v u, w₁} D]
{E : Type w₂}
[CategoryTheory.Category.{max v u, w₂} E]
[∀ (α β : Type (max v u)) (fst snd : β → α),
CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) D]
[∀ (α β : Type (max v u)) (fst snd : β → α),
CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) E]
[∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ D]
[∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ E]
{F : CategoryTheory.Functor D E}
{G : CategoryTheory.Functor D E}
(η : F ⟶ G)
(P : CategoryTheory.Functor Cᵒᵖ D)
[(X : C) → CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ F]
[(X : C) →
(W : CategoryTheory.GrothendieckTopology.Cover J X) →
(P : CategoryTheory.Functor Cᵒᵖ D) →
CategoryTheory.Limits.PreservesLimit
(CategoryTheory.Limits.MulticospanIndex.multicospan (CategoryTheory.GrothendieckTopology.Cover.index W P)) F]
[(X : C) → CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ G]
[(X : C) →
(W : CategoryTheory.GrothendieckTopology.Cover J X) →
(P : CategoryTheory.Functor Cᵒᵖ D) →
CategoryTheory.Limits.PreservesLimit
(CategoryTheory.Limits.MulticospanIndex.multicospan (CategoryTheory.GrothendieckTopology.Cover.index W P)) G]
:
CategoryTheory.CategoryStruct.comp (CategoryTheory.whiskerLeft (CategoryTheory.GrothendieckTopology.plusObj J P) η)
(CategoryTheory.GrothendieckTopology.plusCompIso J G P).hom = CategoryTheory.CategoryStruct.comp (CategoryTheory.GrothendieckTopology.plusCompIso J F P).hom
(CategoryTheory.GrothendieckTopology.plusMap J (CategoryTheory.whiskerLeft P η))
@[simp]
theorem
CategoryTheory.GrothendieckTopology.plusFunctorWhiskerLeftIso_inv_app
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(J : CategoryTheory.GrothendieckTopology C)
{D : Type w₁}
[CategoryTheory.Category.{max v u, w₁} D]
{E : Type w₂}
[CategoryTheory.Category.{max v u, w₂} E]
[∀ (α β : Type (max v u)) (fst snd : β → α),
CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) D]
[∀ (α β : Type (max v u)) (fst snd : β → α),
CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) E]
[∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ D]
[∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ E]
(P : CategoryTheory.Functor Cᵒᵖ D)
[(F : CategoryTheory.Functor D E) →
(X : C) → CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ F]
[(F : CategoryTheory.Functor D E) →
(X : C) →
(W : CategoryTheory.GrothendieckTopology.Cover J X) →
(P : CategoryTheory.Functor Cᵒᵖ D) →
CategoryTheory.Limits.PreservesLimit
(CategoryTheory.Limits.MulticospanIndex.multicospan (CategoryTheory.GrothendieckTopology.Cover.index W P)) F]
(X : CategoryTheory.Functor D E)
:
(CategoryTheory.GrothendieckTopology.plusFunctorWhiskerLeftIso J P).inv.app X = (CategoryTheory.GrothendieckTopology.plusCompIso J X P).inv
@[simp]
theorem
CategoryTheory.GrothendieckTopology.plusFunctorWhiskerLeftIso_hom_app
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(J : CategoryTheory.GrothendieckTopology C)
{D : Type w₁}
[CategoryTheory.Category.{max v u, w₁} D]
{E : Type w₂}
[CategoryTheory.Category.{max v u, w₂} E]
[∀ (α β : Type (max v u)) (fst snd : β → α),
CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) D]
[∀ (α β : Type (max v u)) (fst snd : β → α),
CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) E]
[∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ D]
[∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ E]
(P : CategoryTheory.Functor Cᵒᵖ D)
[(F : CategoryTheory.Functor D E) →
(X : C) → CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ F]
[(F : CategoryTheory.Functor D E) →
(X : C) →
(W : CategoryTheory.GrothendieckTopology.Cover J X) →
(P : CategoryTheory.Functor Cᵒᵖ D) →
CategoryTheory.Limits.PreservesLimit
(CategoryTheory.Limits.MulticospanIndex.multicospan (CategoryTheory.GrothendieckTopology.Cover.index W P)) F]
(X : CategoryTheory.Functor D E)
:
(CategoryTheory.GrothendieckTopology.plusFunctorWhiskerLeftIso J P).hom.app X = (CategoryTheory.GrothendieckTopology.plusCompIso J X P).hom
def
CategoryTheory.GrothendieckTopology.plusFunctorWhiskerLeftIso
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(J : CategoryTheory.GrothendieckTopology C)
{D : Type w₁}
[CategoryTheory.Category.{max v u, w₁} D]
{E : Type w₂}
[CategoryTheory.Category.{max v u, w₂} E]
[∀ (α β : Type (max v u)) (fst snd : β → α),
CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) D]
[∀ (α β : Type (max v u)) (fst snd : β → α),
CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) E]
[∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ D]
[∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ E]
(P : CategoryTheory.Functor Cᵒᵖ D)
[(F : CategoryTheory.Functor D E) →
(X : C) → CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ F]
[(F : CategoryTheory.Functor D E) →
(X : C) →
(W : CategoryTheory.GrothendieckTopology.Cover J X) →
(P : CategoryTheory.Functor Cᵒᵖ D) →
CategoryTheory.Limits.PreservesLimit
(CategoryTheory.Limits.MulticospanIndex.multicospan (CategoryTheory.GrothendieckTopology.Cover.index W P)) F]
:
(CategoryTheory.whiskeringLeft Cᵒᵖ D E).toPrefunctor.obj (CategoryTheory.GrothendieckTopology.plusObj J P) ≅ CategoryTheory.Functor.comp ((CategoryTheory.whiskeringLeft Cᵒᵖ D E).toPrefunctor.obj P)
(CategoryTheory.GrothendieckTopology.plusFunctor J E)
The isomorphism between P⁺ ⋙ F
and (P ⋙ F)⁺
, functorially in F
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.GrothendieckTopology.plusCompIso_whiskerRight_assoc
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(J : CategoryTheory.GrothendieckTopology C)
{D : Type w₁}
[CategoryTheory.Category.{max v u, w₁} D]
{E : Type w₂}
[CategoryTheory.Category.{max v u, w₂} E]
(F : CategoryTheory.Functor D E)
[∀ (α β : Type (max v u)) (fst snd : β → α),
CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) D]
[∀ (α β : Type (max v u)) (fst snd : β → α),
CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) E]
[(X : C) →
(W : CategoryTheory.GrothendieckTopology.Cover J X) →
(P : CategoryTheory.Functor Cᵒᵖ D) →
CategoryTheory.Limits.PreservesLimit
(CategoryTheory.Limits.MulticospanIndex.multicospan (CategoryTheory.GrothendieckTopology.Cover.index W P)) F]
[∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ D]
[∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ E]
[(X : C) → CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ F]
{P : CategoryTheory.Functor Cᵒᵖ D}
{Q : CategoryTheory.Functor Cᵒᵖ D}
(η : P ⟶ Q)
{Z : CategoryTheory.Functor Cᵒᵖ E}
(h : CategoryTheory.GrothendieckTopology.plusObj J (CategoryTheory.Functor.comp Q F) ⟶ Z)
:
CategoryTheory.CategoryStruct.comp (CategoryTheory.whiskerRight (CategoryTheory.GrothendieckTopology.plusMap J η) F)
(CategoryTheory.CategoryStruct.comp (CategoryTheory.GrothendieckTopology.plusCompIso J F Q).hom h) = CategoryTheory.CategoryStruct.comp (CategoryTheory.GrothendieckTopology.plusCompIso J F P).hom
(CategoryTheory.CategoryStruct.comp
(CategoryTheory.GrothendieckTopology.plusMap J (CategoryTheory.whiskerRight η F)) h)
@[simp]
theorem
CategoryTheory.GrothendieckTopology.plusCompIso_whiskerRight
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(J : CategoryTheory.GrothendieckTopology C)
{D : Type w₁}
[CategoryTheory.Category.{max v u, w₁} D]
{E : Type w₂}
[CategoryTheory.Category.{max v u, w₂} E]
(F : CategoryTheory.Functor D E)
[∀ (α β : Type (max v u)) (fst snd : β → α),
CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) D]
[∀ (α β : Type (max v u)) (fst snd : β → α),
CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) E]
[(X : C) →
(W : CategoryTheory.GrothendieckTopology.Cover J X) →
(P : CategoryTheory.Functor Cᵒᵖ D) →
CategoryTheory.Limits.PreservesLimit
(CategoryTheory.Limits.MulticospanIndex.multicospan (CategoryTheory.GrothendieckTopology.Cover.index W P)) F]
[∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ D]
[∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ E]
[(X : C) → CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ F]
{P : CategoryTheory.Functor Cᵒᵖ D}
{Q : CategoryTheory.Functor Cᵒᵖ D}
(η : P ⟶ Q)
:
CategoryTheory.CategoryStruct.comp (CategoryTheory.whiskerRight (CategoryTheory.GrothendieckTopology.plusMap J η) F)
(CategoryTheory.GrothendieckTopology.plusCompIso J F Q).hom = CategoryTheory.CategoryStruct.comp (CategoryTheory.GrothendieckTopology.plusCompIso J F P).hom
(CategoryTheory.GrothendieckTopology.plusMap J (CategoryTheory.whiskerRight η F))
@[simp]
theorem
CategoryTheory.GrothendieckTopology.plusFunctorWhiskerRightIso_inv_app
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(J : CategoryTheory.GrothendieckTopology C)
{D : Type w₁}
[CategoryTheory.Category.{max v u, w₁} D]
{E : Type w₂}
[CategoryTheory.Category.{max v u, w₂} E]
(F : CategoryTheory.Functor D E)
[∀ (α β : Type (max v u)) (fst snd : β → α),
CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) D]
[∀ (α β : Type (max v u)) (fst snd : β → α),
CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) E]
[(X : C) →
(W : CategoryTheory.GrothendieckTopology.Cover J X) →
(P : CategoryTheory.Functor Cᵒᵖ D) →
CategoryTheory.Limits.PreservesLimit
(CategoryTheory.Limits.MulticospanIndex.multicospan (CategoryTheory.GrothendieckTopology.Cover.index W P)) F]
[∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ D]
[∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ E]
[(X : C) → CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ F]
(X : CategoryTheory.Functor Cᵒᵖ D)
:
(CategoryTheory.GrothendieckTopology.plusFunctorWhiskerRightIso J F).inv.app X = (CategoryTheory.GrothendieckTopology.plusCompIso J F X).inv
@[simp]
theorem
CategoryTheory.GrothendieckTopology.plusFunctorWhiskerRightIso_hom_app
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(J : CategoryTheory.GrothendieckTopology C)
{D : Type w₁}
[CategoryTheory.Category.{max v u, w₁} D]
{E : Type w₂}
[CategoryTheory.Category.{max v u, w₂} E]
(F : CategoryTheory.Functor D E)
[∀ (α β : Type (max v u)) (fst snd : β → α),
CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) D]
[∀ (α β : Type (max v u)) (fst snd : β → α),
CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) E]
[(X : C) →
(W : CategoryTheory.GrothendieckTopology.Cover J X) →
(P : CategoryTheory.Functor Cᵒᵖ D) →
CategoryTheory.Limits.PreservesLimit
(CategoryTheory.Limits.MulticospanIndex.multicospan (CategoryTheory.GrothendieckTopology.Cover.index W P)) F]
[∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ D]
[∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ E]
[(X : C) → CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ F]
(X : CategoryTheory.Functor Cᵒᵖ D)
:
(CategoryTheory.GrothendieckTopology.plusFunctorWhiskerRightIso J F).hom.app X = (CategoryTheory.GrothendieckTopology.plusCompIso J F X).hom
def
CategoryTheory.GrothendieckTopology.plusFunctorWhiskerRightIso
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(J : CategoryTheory.GrothendieckTopology C)
{D : Type w₁}
[CategoryTheory.Category.{max v u, w₁} D]
{E : Type w₂}
[CategoryTheory.Category.{max v u, w₂} E]
(F : CategoryTheory.Functor D E)
[∀ (α β : Type (max v u)) (fst snd : β → α),
CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) D]
[∀ (α β : Type (max v u)) (fst snd : β → α),
CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) E]
[(X : C) →
(W : CategoryTheory.GrothendieckTopology.Cover J X) →
(P : CategoryTheory.Functor Cᵒᵖ D) →
CategoryTheory.Limits.PreservesLimit
(CategoryTheory.Limits.MulticospanIndex.multicospan (CategoryTheory.GrothendieckTopology.Cover.index W P)) F]
[∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ D]
[∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ E]
[(X : C) → CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ F]
:
CategoryTheory.Functor.comp (CategoryTheory.GrothendieckTopology.plusFunctor J D)
((CategoryTheory.whiskeringRight Cᵒᵖ D E).toPrefunctor.obj F) ≅ CategoryTheory.Functor.comp ((CategoryTheory.whiskeringRight Cᵒᵖ D E).toPrefunctor.obj F)
(CategoryTheory.GrothendieckTopology.plusFunctor J E)
The isomorphism between P⁺ ⋙ F
and (P ⋙ F)⁺
, functorially in P
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.GrothendieckTopology.whiskerRight_toPlus_comp_plusCompIso_hom_assoc
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(J : CategoryTheory.GrothendieckTopology C)
{D : Type w₁}
[CategoryTheory.Category.{max v u, w₁} D]
{E : Type w₂}
[CategoryTheory.Category.{max v u, w₂} E]
(F : CategoryTheory.Functor D E)
[∀ (α β : Type (max v u)) (fst snd : β → α),
CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) D]
[∀ (α β : Type (max v u)) (fst snd : β → α),
CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) E]
[(X : C) →
(W : CategoryTheory.GrothendieckTopology.Cover J X) →
(P : CategoryTheory.Functor Cᵒᵖ D) →
CategoryTheory.Limits.PreservesLimit
(CategoryTheory.Limits.MulticospanIndex.multicospan (CategoryTheory.GrothendieckTopology.Cover.index W P)) F]
(P : CategoryTheory.Functor Cᵒᵖ D)
[∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ D]
[∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ E]
[(X : C) → CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ F]
{Z : CategoryTheory.Functor Cᵒᵖ E}
(h : CategoryTheory.GrothendieckTopology.plusObj J (CategoryTheory.Functor.comp P F) ⟶ Z)
:
CategoryTheory.CategoryStruct.comp (CategoryTheory.whiskerRight (CategoryTheory.GrothendieckTopology.toPlus J P) F)
(CategoryTheory.CategoryStruct.comp (CategoryTheory.GrothendieckTopology.plusCompIso J F P).hom h) = CategoryTheory.CategoryStruct.comp (CategoryTheory.GrothendieckTopology.toPlus J (CategoryTheory.Functor.comp P F)) h
@[simp]
theorem
CategoryTheory.GrothendieckTopology.whiskerRight_toPlus_comp_plusCompIso_hom
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(J : CategoryTheory.GrothendieckTopology C)
{D : Type w₁}
[CategoryTheory.Category.{max v u, w₁} D]
{E : Type w₂}
[CategoryTheory.Category.{max v u, w₂} E]
(F : CategoryTheory.Functor D E)
[∀ (α β : Type (max v u)) (fst snd : β → α),
CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) D]
[∀ (α β : Type (max v u)) (fst snd : β → α),
CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) E]
[(X : C) →
(W : CategoryTheory.GrothendieckTopology.Cover J X) →
(P : CategoryTheory.Functor Cᵒᵖ D) →
CategoryTheory.Limits.PreservesLimit
(CategoryTheory.Limits.MulticospanIndex.multicospan (CategoryTheory.GrothendieckTopology.Cover.index W P)) F]
(P : CategoryTheory.Functor Cᵒᵖ D)
[∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ D]
[∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ E]
[(X : C) → CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ F]
:
@[simp]
theorem
CategoryTheory.GrothendieckTopology.toPlus_comp_plusCompIso_inv
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(J : CategoryTheory.GrothendieckTopology C)
{D : Type w₁}
[CategoryTheory.Category.{max v u, w₁} D]
{E : Type w₂}
[CategoryTheory.Category.{max v u, w₂} E]
(F : CategoryTheory.Functor D E)
[∀ (α β : Type (max v u)) (fst snd : β → α),
CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) D]
[∀ (α β : Type (max v u)) (fst snd : β → α),
CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) E]
[(X : C) →
(W : CategoryTheory.GrothendieckTopology.Cover J X) →
(P : CategoryTheory.Functor Cᵒᵖ D) →
CategoryTheory.Limits.PreservesLimit
(CategoryTheory.Limits.MulticospanIndex.multicospan (CategoryTheory.GrothendieckTopology.Cover.index W P)) F]
(P : CategoryTheory.Functor Cᵒᵖ D)
[∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ D]
[∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ E]
[(X : C) → CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ F]
:
theorem
CategoryTheory.GrothendieckTopology.plusCompIso_inv_eq_plusLift
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(J : CategoryTheory.GrothendieckTopology C)
{D : Type w₁}
[CategoryTheory.Category.{max v u, w₁} D]
{E : Type w₂}
[CategoryTheory.Category.{max v u, w₂} E]
(F : CategoryTheory.Functor D E)
[∀ (α β : Type (max v u)) (fst snd : β → α),
CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) D]
[∀ (α β : Type (max v u)) (fst snd : β → α),
CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) E]
[(X : C) →
(W : CategoryTheory.GrothendieckTopology.Cover J X) →
(P : CategoryTheory.Functor Cᵒᵖ D) →
CategoryTheory.Limits.PreservesLimit
(CategoryTheory.Limits.MulticospanIndex.multicospan (CategoryTheory.GrothendieckTopology.Cover.index W P)) F]
(P : CategoryTheory.Functor Cᵒᵖ D)
[∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ D]
[∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ E]
[(X : C) → CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ F]
(hP : CategoryTheory.Presheaf.IsSheaf J (CategoryTheory.Functor.comp (CategoryTheory.GrothendieckTopology.plusObj J P) F))
: