Documentation

Mathlib.CategoryTheory.Sites.CompatiblePlus

In this file, we prove that the plus functor is compatible with functors which preserve the correct limits and colimits.

See CategoryTheory/Sites/CompatibleSheafification for the compatibility of sheafification, which follows easily from the content in this file.

@[simp]
theorem CategoryTheory.GrothendieckTopology.diagramCompIso_hom_ι_assoc {C : Type u} [CategoryTheory.Category.{v, u} C] (J : CategoryTheory.GrothendieckTopology C) {D : Type w₁} [CategoryTheory.Category.{max v u, w₁} D] {E : Type w₂} [CategoryTheory.Category.{max v u, w₂} E] (F : CategoryTheory.Functor D E) [∀ (α β : Type (max v u)) (fst snd : βα), CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) D] [∀ (α β : Type (max v u)) (fst snd : βα), CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) E] [(X : C) → (W : CategoryTheory.GrothendieckTopology.Cover J X) → (P : CategoryTheory.Functor Cᵒᵖ D) → CategoryTheory.Limits.PreservesLimit (CategoryTheory.Limits.MulticospanIndex.multicospan (CategoryTheory.GrothendieckTopology.Cover.index W P)) F] (P : CategoryTheory.Functor Cᵒᵖ D) (X : C) (W : (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ) (i : CategoryTheory.GrothendieckTopology.Cover.Arrow W.unop) {Z : E} (h : (CategoryTheory.GrothendieckTopology.Cover.index W.unop (CategoryTheory.Functor.comp P F)).left i Z) :

The isomorphism between P⁺ ⋙ F and (P ⋙ F)⁺.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem CategoryTheory.GrothendieckTopology.ι_plusCompIso_hom_assoc {C : Type u} [CategoryTheory.Category.{v, u} C] (J : CategoryTheory.GrothendieckTopology C) {D : Type w₁} [CategoryTheory.Category.{max v u, w₁} D] {E : Type w₂} [CategoryTheory.Category.{max v u, w₂} E] (F : CategoryTheory.Functor D E) [∀ (α β : Type (max v u)) (fst snd : βα), CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) D] [∀ (α β : Type (max v u)) (fst snd : βα), CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) E] [(X : C) → (W : CategoryTheory.GrothendieckTopology.Cover J X) → (P : CategoryTheory.Functor Cᵒᵖ D) → CategoryTheory.Limits.PreservesLimit (CategoryTheory.Limits.MulticospanIndex.multicospan (CategoryTheory.GrothendieckTopology.Cover.index W P)) F] (P : CategoryTheory.Functor Cᵒᵖ D) [∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ D] [∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ E] [(X : C) → CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ F] (X : Cᵒᵖ) (W : (CategoryTheory.GrothendieckTopology.Cover J X.unop)ᵒᵖ) {Z : E} (h : (CategoryTheory.GrothendieckTopology.plusObj J (CategoryTheory.Functor.comp P F)).toPrefunctor.obj X Z) :
    @[simp]
    theorem CategoryTheory.GrothendieckTopology.ι_plusCompIso_hom {C : Type u} [CategoryTheory.Category.{v, u} C] (J : CategoryTheory.GrothendieckTopology C) {D : Type w₁} [CategoryTheory.Category.{max v u, w₁} D] {E : Type w₂} [CategoryTheory.Category.{max v u, w₂} E] (F : CategoryTheory.Functor D E) [∀ (α β : Type (max v u)) (fst snd : βα), CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) D] [∀ (α β : Type (max v u)) (fst snd : βα), CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) E] [(X : C) → (W : CategoryTheory.GrothendieckTopology.Cover J X) → (P : CategoryTheory.Functor Cᵒᵖ D) → CategoryTheory.Limits.PreservesLimit (CategoryTheory.Limits.MulticospanIndex.multicospan (CategoryTheory.GrothendieckTopology.Cover.index W P)) F] (P : CategoryTheory.Functor Cᵒᵖ D) [∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ D] [∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ E] [(X : C) → CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ F] (X : Cᵒᵖ) (W : (CategoryTheory.GrothendieckTopology.Cover J X.unop)ᵒᵖ) :
    @[simp]
    theorem CategoryTheory.GrothendieckTopology.plusCompIso_whiskerLeft_assoc {C : Type u} [CategoryTheory.Category.{v, u} C] (J : CategoryTheory.GrothendieckTopology C) {D : Type w₁} [CategoryTheory.Category.{max v u, w₁} D] {E : Type w₂} [CategoryTheory.Category.{max v u, w₂} E] [∀ (α β : Type (max v u)) (fst snd : βα), CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) D] [∀ (α β : Type (max v u)) (fst snd : βα), CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) E] [∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ D] [∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ E] {F : CategoryTheory.Functor D E} {G : CategoryTheory.Functor D E} (η : F G) (P : CategoryTheory.Functor Cᵒᵖ D) [(X : C) → CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ F] [(X : C) → (W : CategoryTheory.GrothendieckTopology.Cover J X) → (P : CategoryTheory.Functor Cᵒᵖ D) → CategoryTheory.Limits.PreservesLimit (CategoryTheory.Limits.MulticospanIndex.multicospan (CategoryTheory.GrothendieckTopology.Cover.index W P)) F] [(X : C) → CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ G] [(X : C) → (W : CategoryTheory.GrothendieckTopology.Cover J X) → (P : CategoryTheory.Functor Cᵒᵖ D) → CategoryTheory.Limits.PreservesLimit (CategoryTheory.Limits.MulticospanIndex.multicospan (CategoryTheory.GrothendieckTopology.Cover.index W P)) G] {Z : CategoryTheory.Functor Cᵒᵖ E} (h : CategoryTheory.GrothendieckTopology.plusObj J (CategoryTheory.Functor.comp P G) Z) :
    @[simp]
    theorem CategoryTheory.GrothendieckTopology.plusCompIso_whiskerLeft {C : Type u} [CategoryTheory.Category.{v, u} C] (J : CategoryTheory.GrothendieckTopology C) {D : Type w₁} [CategoryTheory.Category.{max v u, w₁} D] {E : Type w₂} [CategoryTheory.Category.{max v u, w₂} E] [∀ (α β : Type (max v u)) (fst snd : βα), CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) D] [∀ (α β : Type (max v u)) (fst snd : βα), CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) E] [∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ D] [∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ E] {F : CategoryTheory.Functor D E} {G : CategoryTheory.Functor D E} (η : F G) (P : CategoryTheory.Functor Cᵒᵖ D) [(X : C) → CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ F] [(X : C) → (W : CategoryTheory.GrothendieckTopology.Cover J X) → (P : CategoryTheory.Functor Cᵒᵖ D) → CategoryTheory.Limits.PreservesLimit (CategoryTheory.Limits.MulticospanIndex.multicospan (CategoryTheory.GrothendieckTopology.Cover.index W P)) F] [(X : C) → CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ G] [(X : C) → (W : CategoryTheory.GrothendieckTopology.Cover J X) → (P : CategoryTheory.Functor Cᵒᵖ D) → CategoryTheory.Limits.PreservesLimit (CategoryTheory.Limits.MulticospanIndex.multicospan (CategoryTheory.GrothendieckTopology.Cover.index W P)) G] :
    def CategoryTheory.GrothendieckTopology.plusFunctorWhiskerLeftIso {C : Type u} [CategoryTheory.Category.{v, u} C] (J : CategoryTheory.GrothendieckTopology C) {D : Type w₁} [CategoryTheory.Category.{max v u, w₁} D] {E : Type w₂} [CategoryTheory.Category.{max v u, w₂} E] [∀ (α β : Type (max v u)) (fst snd : βα), CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) D] [∀ (α β : Type (max v u)) (fst snd : βα), CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) E] [∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ D] [∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ E] (P : CategoryTheory.Functor Cᵒᵖ D) [(F : CategoryTheory.Functor D E) → (X : C) → CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ F] [(F : CategoryTheory.Functor D E) → (X : C) → (W : CategoryTheory.GrothendieckTopology.Cover J X) → (P : CategoryTheory.Functor Cᵒᵖ D) → CategoryTheory.Limits.PreservesLimit (CategoryTheory.Limits.MulticospanIndex.multicospan (CategoryTheory.GrothendieckTopology.Cover.index W P)) F] :

    The isomorphism between P⁺ ⋙ F and (P ⋙ F)⁺, functorially in F.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[simp]
      theorem CategoryTheory.GrothendieckTopology.plusCompIso_whiskerRight_assoc {C : Type u} [CategoryTheory.Category.{v, u} C] (J : CategoryTheory.GrothendieckTopology C) {D : Type w₁} [CategoryTheory.Category.{max v u, w₁} D] {E : Type w₂} [CategoryTheory.Category.{max v u, w₂} E] (F : CategoryTheory.Functor D E) [∀ (α β : Type (max v u)) (fst snd : βα), CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) D] [∀ (α β : Type (max v u)) (fst snd : βα), CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) E] [(X : C) → (W : CategoryTheory.GrothendieckTopology.Cover J X) → (P : CategoryTheory.Functor Cᵒᵖ D) → CategoryTheory.Limits.PreservesLimit (CategoryTheory.Limits.MulticospanIndex.multicospan (CategoryTheory.GrothendieckTopology.Cover.index W P)) F] [∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ D] [∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ E] [(X : C) → CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ F] {P : CategoryTheory.Functor Cᵒᵖ D} {Q : CategoryTheory.Functor Cᵒᵖ D} (η : P Q) {Z : CategoryTheory.Functor Cᵒᵖ E} (h : CategoryTheory.GrothendieckTopology.plusObj J (CategoryTheory.Functor.comp Q F) Z) :
      @[simp]
      theorem CategoryTheory.GrothendieckTopology.plusCompIso_whiskerRight {C : Type u} [CategoryTheory.Category.{v, u} C] (J : CategoryTheory.GrothendieckTopology C) {D : Type w₁} [CategoryTheory.Category.{max v u, w₁} D] {E : Type w₂} [CategoryTheory.Category.{max v u, w₂} E] (F : CategoryTheory.Functor D E) [∀ (α β : Type (max v u)) (fst snd : βα), CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) D] [∀ (α β : Type (max v u)) (fst snd : βα), CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) E] [(X : C) → (W : CategoryTheory.GrothendieckTopology.Cover J X) → (P : CategoryTheory.Functor Cᵒᵖ D) → CategoryTheory.Limits.PreservesLimit (CategoryTheory.Limits.MulticospanIndex.multicospan (CategoryTheory.GrothendieckTopology.Cover.index W P)) F] [∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ D] [∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ E] [(X : C) → CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ F] {P : CategoryTheory.Functor Cᵒᵖ D} {Q : CategoryTheory.Functor Cᵒᵖ D} (η : P Q) :
      def CategoryTheory.GrothendieckTopology.plusFunctorWhiskerRightIso {C : Type u} [CategoryTheory.Category.{v, u} C] (J : CategoryTheory.GrothendieckTopology C) {D : Type w₁} [CategoryTheory.Category.{max v u, w₁} D] {E : Type w₂} [CategoryTheory.Category.{max v u, w₂} E] (F : CategoryTheory.Functor D E) [∀ (α β : Type (max v u)) (fst snd : βα), CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) D] [∀ (α β : Type (max v u)) (fst snd : βα), CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) E] [(X : C) → (W : CategoryTheory.GrothendieckTopology.Cover J X) → (P : CategoryTheory.Functor Cᵒᵖ D) → CategoryTheory.Limits.PreservesLimit (CategoryTheory.Limits.MulticospanIndex.multicospan (CategoryTheory.GrothendieckTopology.Cover.index W P)) F] [∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ D] [∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ E] [(X : C) → CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ F] :

      The isomorphism between P⁺ ⋙ F and (P ⋙ F)⁺, functorially in P.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[simp]
        theorem CategoryTheory.GrothendieckTopology.whiskerRight_toPlus_comp_plusCompIso_hom_assoc {C : Type u} [CategoryTheory.Category.{v, u} C] (J : CategoryTheory.GrothendieckTopology C) {D : Type w₁} [CategoryTheory.Category.{max v u, w₁} D] {E : Type w₂} [CategoryTheory.Category.{max v u, w₂} E] (F : CategoryTheory.Functor D E) [∀ (α β : Type (max v u)) (fst snd : βα), CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) D] [∀ (α β : Type (max v u)) (fst snd : βα), CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) E] [(X : C) → (W : CategoryTheory.GrothendieckTopology.Cover J X) → (P : CategoryTheory.Functor Cᵒᵖ D) → CategoryTheory.Limits.PreservesLimit (CategoryTheory.Limits.MulticospanIndex.multicospan (CategoryTheory.GrothendieckTopology.Cover.index W P)) F] (P : CategoryTheory.Functor Cᵒᵖ D) [∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ D] [∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ E] [(X : C) → CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ F] {Z : CategoryTheory.Functor Cᵒᵖ E} (h : CategoryTheory.GrothendieckTopology.plusObj J (CategoryTheory.Functor.comp P F) Z) :
        @[simp]
        theorem CategoryTheory.GrothendieckTopology.whiskerRight_toPlus_comp_plusCompIso_hom {C : Type u} [CategoryTheory.Category.{v, u} C] (J : CategoryTheory.GrothendieckTopology C) {D : Type w₁} [CategoryTheory.Category.{max v u, w₁} D] {E : Type w₂} [CategoryTheory.Category.{max v u, w₂} E] (F : CategoryTheory.Functor D E) [∀ (α β : Type (max v u)) (fst snd : βα), CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) D] [∀ (α β : Type (max v u)) (fst snd : βα), CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) E] [(X : C) → (W : CategoryTheory.GrothendieckTopology.Cover J X) → (P : CategoryTheory.Functor Cᵒᵖ D) → CategoryTheory.Limits.PreservesLimit (CategoryTheory.Limits.MulticospanIndex.multicospan (CategoryTheory.GrothendieckTopology.Cover.index W P)) F] (P : CategoryTheory.Functor Cᵒᵖ D) [∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ D] [∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ E] [(X : C) → CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ F] :
        @[simp]
        theorem CategoryTheory.GrothendieckTopology.toPlus_comp_plusCompIso_inv {C : Type u} [CategoryTheory.Category.{v, u} C] (J : CategoryTheory.GrothendieckTopology C) {D : Type w₁} [CategoryTheory.Category.{max v u, w₁} D] {E : Type w₂} [CategoryTheory.Category.{max v u, w₂} E] (F : CategoryTheory.Functor D E) [∀ (α β : Type (max v u)) (fst snd : βα), CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) D] [∀ (α β : Type (max v u)) (fst snd : βα), CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) E] [(X : C) → (W : CategoryTheory.GrothendieckTopology.Cover J X) → (P : CategoryTheory.Functor Cᵒᵖ D) → CategoryTheory.Limits.PreservesLimit (CategoryTheory.Limits.MulticospanIndex.multicospan (CategoryTheory.GrothendieckTopology.Cover.index W P)) F] (P : CategoryTheory.Functor Cᵒᵖ D) [∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ D] [∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ E] [(X : C) → CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ F] :
        theorem CategoryTheory.GrothendieckTopology.plusCompIso_inv_eq_plusLift {C : Type u} [CategoryTheory.Category.{v, u} C] (J : CategoryTheory.GrothendieckTopology C) {D : Type w₁} [CategoryTheory.Category.{max v u, w₁} D] {E : Type w₂} [CategoryTheory.Category.{max v u, w₂} E] (F : CategoryTheory.Functor D E) [∀ (α β : Type (max v u)) (fst snd : βα), CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) D] [∀ (α β : Type (max v u)) (fst snd : βα), CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) E] [(X : C) → (W : CategoryTheory.GrothendieckTopology.Cover J X) → (P : CategoryTheory.Functor Cᵒᵖ D) → CategoryTheory.Limits.PreservesLimit (CategoryTheory.Limits.MulticospanIndex.multicospan (CategoryTheory.GrothendieckTopology.Cover.index W P)) F] (P : CategoryTheory.Functor Cᵒᵖ D) [∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ D] [∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ E] [(X : C) → CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ F] (hP : CategoryTheory.Presheaf.IsSheaf J (CategoryTheory.Functor.comp (CategoryTheory.GrothendieckTopology.plusObj J P) F)) :