Documentation

Mathlib.CategoryTheory.Sites.ConcreteSheafification

Sheafification #

We construct the sheafification of a presheaf over a site C with values in D whenever D is a concrete category for which the forgetful functor preserves the appropriate (co)limits and reflects isomorphisms.

We generally follow the approach of https://stacks.math.columbia.edu/tag/00W1

A concrete version of the multiequalizer, to be used below.

Equations
  • One or more equations did not get rendered due to their size.
Instances For

    Refine a term of Meq P T with respect to a refinement S ⟶ T of covers.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For

      Pull back a term of Meq P S with respect to a morphism f : Y ⟶ X in C.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For

        Make a term of Meq P S.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          def CategoryTheory.GrothendieckTopology.Plus.meqOfSep {C : Type u} [CategoryTheory.Category.{v, u} C] {J : CategoryTheory.GrothendieckTopology C} {D : Type w} [CategoryTheory.Category.{max v u, w} D] [CategoryTheory.ConcreteCategory D] [CategoryTheory.Limits.PreservesLimits (CategoryTheory.forget D)] [∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ D] [∀ (P : CategoryTheory.Functor Cᵒᵖ D) (X : C) (S : CategoryTheory.GrothendieckTopology.Cover J X), CategoryTheory.Limits.HasMultiequalizer (CategoryTheory.GrothendieckTopology.Cover.index S P)] [(X : C) → CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.GrothendieckTopology.Cover J X)ᵒᵖ (CategoryTheory.forget D)] (P : CategoryTheory.Functor Cᵒᵖ D) (hsep : ∀ (X : C) (S : CategoryTheory.GrothendieckTopology.Cover J X) (x y : (CategoryTheory.forget D).toPrefunctor.obj (P.toPrefunctor.obj (Opposite.op X))), (∀ (I : CategoryTheory.GrothendieckTopology.Cover.Arrow S), (P.toPrefunctor.map I.f.op) x = (P.toPrefunctor.map I.f.op) y)x = y) (X : C) (S : CategoryTheory.GrothendieckTopology.Cover J X) (s : CategoryTheory.Meq (CategoryTheory.GrothendieckTopology.plusObj J P) S) (T : (I : CategoryTheory.GrothendieckTopology.Cover.Arrow S) → CategoryTheory.GrothendieckTopology.Cover J I.Y) (t : (I : CategoryTheory.GrothendieckTopology.Cover.Arrow S) → CategoryTheory.Meq P (T I)) (ht : ∀ (I : CategoryTheory.GrothendieckTopology.Cover.Arrow S), s I = CategoryTheory.GrothendieckTopology.Plus.mk (t I)) :

          An auxiliary definition to be used in the proof of exists_of_sep below. Given a compatible family of local sections for P⁺, and representatives of said sections, construct a compatible family of local sections of P over the combination of the covers associated to the representatives. The separatedness condition is used to prove compatibility among these local sections of P.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For

            The canonical map from P to its sheafification, as a natural transformation. Note: We only show this is a sheaf under additional hypotheses on D.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For