The constant sheaf #
We define the constant sheaf functor (the sheafification of the constant presheaf)
constantSheaf : D ⥤ Sheaf J D
and prove that it is left adjoint to evaluation at a terminal
object (see constantSheafAdj
).
noncomputable def
CategoryTheory.constantPresheafAdj
{C : Type u_1}
[CategoryTheory.Category.{u_3, u_1} C]
(D : Type u_2)
[CategoryTheory.Category.{u_4, u_2} D]
{T : C}
(hT : CategoryTheory.Limits.IsTerminal T)
:
CategoryTheory.Functor.const Cᵒᵖ ⊣ (CategoryTheory.evaluation Cᵒᵖ D).toPrefunctor.obj (Opposite.op T)
The constant presheaf functor is left adjoint to evaluation at a terminal object.
Equations
- One or more equations did not get rendered due to their size.
Instances For
noncomputable def
CategoryTheory.constantSheaf
{C : Type u_1}
[CategoryTheory.Category.{u_3, u_1} C]
(J : CategoryTheory.GrothendieckTopology C)
(D : Type u_2)
[CategoryTheory.Category.{u_4, u_2} D]
[CategoryTheory.HasWeakSheafify J D]
:
The functor which maps an object of D
to the constant sheaf at that object, i.e. the
sheafification of the constant presheaf.
Equations
Instances For
noncomputable def
CategoryTheory.constantSheafAdj
{C : Type u_1}
[CategoryTheory.Category.{u_3, u_1} C]
(J : CategoryTheory.GrothendieckTopology C)
(D : Type u_2)
[CategoryTheory.Category.{u_4, u_2} D]
[CategoryTheory.HasWeakSheafify J D]
{T : C}
(hT : CategoryTheory.Limits.IsTerminal T)
:
CategoryTheory.constantSheaf J D ⊣ (CategoryTheory.sheafSections J D).toPrefunctor.obj (Opposite.op T)
The constant sheaf functor is left adjoint to evaluation at a terminal object.