Documentation

Mathlib.CategoryTheory.Triangulated.Triangulated

Triangulated Categories #

This file contains the definition of triangulated categories, which are pretriangulated categories which satisfy the octahedron axiom.

structure CategoryTheory.Triangulated.Octahedron {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Preadditive C] [CategoryTheory.Limits.HasZeroObject C] [CategoryTheory.HasShift C ] [∀ (n : ), CategoryTheory.Functor.Additive (CategoryTheory.shiftFunctor C n)] [CategoryTheory.Pretriangulated C] {X₁ : C} {X₂ : C} {X₃ : C} {Z₁₂ : C} {Z₂₃ : C} {Z₁₃ : C} {u₁₂ : X₁ X₂} {u₂₃ : X₂ X₃} {u₁₃ : X₁ X₃} (comm : CategoryTheory.CategoryStruct.comp u₁₂ u₂₃ = u₁₃) {v₁₂ : X₂ Z₁₂} {w₁₂ : Z₁₂ (CategoryTheory.shiftFunctor C 1).toPrefunctor.obj X₁} (h₁₂ : CategoryTheory.Pretriangulated.Triangle.mk u₁₂ v₁₂ w₁₂ CategoryTheory.Pretriangulated.distinguishedTriangles) {v₂₃ : X₃ Z₂₃} {w₂₃ : Z₂₃ (CategoryTheory.shiftFunctor C 1).toPrefunctor.obj X₂} (h₂₃ : CategoryTheory.Pretriangulated.Triangle.mk u₂₃ v₂₃ w₂₃ CategoryTheory.Pretriangulated.distinguishedTriangles) {v₁₃ : X₃ Z₁₃} {w₁₃ : Z₁₃ (CategoryTheory.shiftFunctor C 1).toPrefunctor.obj X₁} (h₁₃ : CategoryTheory.Pretriangulated.Triangle.mk u₁₃ v₁₃ w₁₃ CategoryTheory.Pretriangulated.distinguishedTriangles) :
Type u_2

An octahedron is a type of datum whose existence is asserted by the octahedron axiom (TR 4), see https://stacks.math.columbia.edu/tag/05QK

Instances For
    theorem CategoryTheory.Triangulated.Octahedron.comm₂_assoc {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Preadditive C] [CategoryTheory.Limits.HasZeroObject C] [CategoryTheory.HasShift C ] [∀ (n : ), CategoryTheory.Functor.Additive (CategoryTheory.shiftFunctor C n)] [CategoryTheory.Pretriangulated C] {X₁ : C} {X₂ : C} {X₃ : C} {Z₁₂ : C} {Z₂₃ : C} {Z₁₃ : C} {u₁₂ : X₁ X₂} {u₂₃ : X₂ X₃} {u₁₃ : X₁ X₃} {comm : CategoryTheory.CategoryStruct.comp u₁₂ u₂₃ = u₁₃} {v₁₂ : X₂ Z₁₂} {w₁₂ : Z₁₂ (CategoryTheory.shiftFunctor C 1).toPrefunctor.obj X₁} {h₁₂ : CategoryTheory.Pretriangulated.Triangle.mk u₁₂ v₁₂ w₁₂ CategoryTheory.Pretriangulated.distinguishedTriangles} {v₂₃ : X₃ Z₂₃} {w₂₃ : Z₂₃ (CategoryTheory.shiftFunctor C 1).toPrefunctor.obj X₂} {h₂₃ : CategoryTheory.Pretriangulated.Triangle.mk u₂₃ v₂₃ w₂₃ CategoryTheory.Pretriangulated.distinguishedTriangles} {v₁₃ : X₃ Z₁₃} {w₁₃ : Z₁₃ (CategoryTheory.shiftFunctor C 1).toPrefunctor.obj X₁} {h₁₃ : CategoryTheory.Pretriangulated.Triangle.mk u₁₃ v₁₃ w₁₃ CategoryTheory.Pretriangulated.distinguishedTriangles} (self : CategoryTheory.Triangulated.Octahedron comm h₁₂ h₂₃ h₁₃) {Z : C} (h : (CategoryTheory.shiftFunctor C 1).toPrefunctor.obj X₁ Z) :
    theorem CategoryTheory.Triangulated.Octahedron.comm₄_assoc {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Preadditive C] [CategoryTheory.Limits.HasZeroObject C] [CategoryTheory.HasShift C ] [∀ (n : ), CategoryTheory.Functor.Additive (CategoryTheory.shiftFunctor C n)] [CategoryTheory.Pretriangulated C] {X₁ : C} {X₂ : C} {X₃ : C} {Z₁₂ : C} {Z₂₃ : C} {Z₁₃ : C} {u₁₂ : X₁ X₂} {u₂₃ : X₂ X₃} {u₁₃ : X₁ X₃} {comm : CategoryTheory.CategoryStruct.comp u₁₂ u₂₃ = u₁₃} {v₁₂ : X₂ Z₁₂} {w₁₂ : Z₁₂ (CategoryTheory.shiftFunctor C 1).toPrefunctor.obj X₁} {h₁₂ : CategoryTheory.Pretriangulated.Triangle.mk u₁₂ v₁₂ w₁₂ CategoryTheory.Pretriangulated.distinguishedTriangles} {v₂₃ : X₃ Z₂₃} {w₂₃ : Z₂₃ (CategoryTheory.shiftFunctor C 1).toPrefunctor.obj X₂} {h₂₃ : CategoryTheory.Pretriangulated.Triangle.mk u₂₃ v₂₃ w₂₃ CategoryTheory.Pretriangulated.distinguishedTriangles} {v₁₃ : X₃ Z₁₃} {w₁₃ : Z₁₃ (CategoryTheory.shiftFunctor C 1).toPrefunctor.obj X₁} {h₁₃ : CategoryTheory.Pretriangulated.Triangle.mk u₁₃ v₁₃ w₁₃ CategoryTheory.Pretriangulated.distinguishedTriangles} (self : CategoryTheory.Triangulated.Octahedron comm h₁₂ h₂₃ h₁₃) {Z : C} (h : (CategoryTheory.shiftFunctor C 1).toPrefunctor.obj X₂ Z) :
    theorem CategoryTheory.Triangulated.Octahedron.comm₁_assoc {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Preadditive C] [CategoryTheory.Limits.HasZeroObject C] [CategoryTheory.HasShift C ] [∀ (n : ), CategoryTheory.Functor.Additive (CategoryTheory.shiftFunctor C n)] [CategoryTheory.Pretriangulated C] {X₁ : C} {X₂ : C} {X₃ : C} {Z₁₂ : C} {Z₂₃ : C} {Z₁₃ : C} {u₁₂ : X₁ X₂} {u₂₃ : X₂ X₃} {u₁₃ : X₁ X₃} {comm : CategoryTheory.CategoryStruct.comp u₁₂ u₂₃ = u₁₃} {v₁₂ : X₂ Z₁₂} {w₁₂ : Z₁₂ (CategoryTheory.shiftFunctor C 1).toPrefunctor.obj X₁} {h₁₂ : CategoryTheory.Pretriangulated.Triangle.mk u₁₂ v₁₂ w₁₂ CategoryTheory.Pretriangulated.distinguishedTriangles} {v₂₃ : X₃ Z₂₃} {w₂₃ : Z₂₃ (CategoryTheory.shiftFunctor C 1).toPrefunctor.obj X₂} {h₂₃ : CategoryTheory.Pretriangulated.Triangle.mk u₂₃ v₂₃ w₂₃ CategoryTheory.Pretriangulated.distinguishedTriangles} {v₁₃ : X₃ Z₁₃} {w₁₃ : Z₁₃ (CategoryTheory.shiftFunctor C 1).toPrefunctor.obj X₁} {h₁₃ : CategoryTheory.Pretriangulated.Triangle.mk u₁₃ v₁₃ w₁₃ CategoryTheory.Pretriangulated.distinguishedTriangles} (self : CategoryTheory.Triangulated.Octahedron comm h₁₂ h₂₃ h₁₃) {Z : C} (h : Z₁₃ Z) :
    theorem CategoryTheory.Triangulated.Octahedron.comm₃_assoc {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Preadditive C] [CategoryTheory.Limits.HasZeroObject C] [CategoryTheory.HasShift C ] [∀ (n : ), CategoryTheory.Functor.Additive (CategoryTheory.shiftFunctor C n)] [CategoryTheory.Pretriangulated C] {X₁ : C} {X₂ : C} {X₃ : C} {Z₁₂ : C} {Z₂₃ : C} {Z₁₃ : C} {u₁₂ : X₁ X₂} {u₂₃ : X₂ X₃} {u₁₃ : X₁ X₃} {comm : CategoryTheory.CategoryStruct.comp u₁₂ u₂₃ = u₁₃} {v₁₂ : X₂ Z₁₂} {w₁₂ : Z₁₂ (CategoryTheory.shiftFunctor C 1).toPrefunctor.obj X₁} {h₁₂ : CategoryTheory.Pretriangulated.Triangle.mk u₁₂ v₁₂ w₁₂ CategoryTheory.Pretriangulated.distinguishedTriangles} {v₂₃ : X₃ Z₂₃} {w₂₃ : Z₂₃ (CategoryTheory.shiftFunctor C 1).toPrefunctor.obj X₂} {h₂₃ : CategoryTheory.Pretriangulated.Triangle.mk u₂₃ v₂₃ w₂₃ CategoryTheory.Pretriangulated.distinguishedTriangles} {v₁₃ : X₃ Z₁₃} {w₁₃ : Z₁₃ (CategoryTheory.shiftFunctor C 1).toPrefunctor.obj X₁} {h₁₃ : CategoryTheory.Pretriangulated.Triangle.mk u₁₃ v₁₃ w₁₃ CategoryTheory.Pretriangulated.distinguishedTriangles} (self : CategoryTheory.Triangulated.Octahedron comm h₁₂ h₂₃ h₁₃) {Z : C} (h : Z₂₃ Z) :
    @[simp]
    theorem CategoryTheory.Triangulated.Octahedron.triangle_mor₃ {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Preadditive C] [CategoryTheory.Limits.HasZeroObject C] [CategoryTheory.HasShift C ] [∀ (n : ), CategoryTheory.Functor.Additive (CategoryTheory.shiftFunctor C n)] [CategoryTheory.Pretriangulated C] {X₁ : C} {X₂ : C} {X₃ : C} {Z₁₂ : C} {Z₂₃ : C} {Z₁₃ : C} {u₁₂ : X₁ X₂} {u₂₃ : X₂ X₃} {u₁₃ : X₁ X₃} (comm : CategoryTheory.CategoryStruct.comp u₁₂ u₂₃ = u₁₃) {v₁₂ : X₂ Z₁₂} {w₁₂ : Z₁₂ (CategoryTheory.shiftFunctor C 1).toPrefunctor.obj X₁} {h₁₂ : CategoryTheory.Pretriangulated.Triangle.mk u₁₂ v₁₂ w₁₂ CategoryTheory.Pretriangulated.distinguishedTriangles} {v₂₃ : X₃ Z₂₃} {w₂₃ : Z₂₃ (CategoryTheory.shiftFunctor C 1).toPrefunctor.obj X₂} {h₂₃ : CategoryTheory.Pretriangulated.Triangle.mk u₂₃ v₂₃ w₂₃ CategoryTheory.Pretriangulated.distinguishedTriangles} {v₁₃ : X₃ Z₁₃} {w₁₃ : Z₁₃ (CategoryTheory.shiftFunctor C 1).toPrefunctor.obj X₁} {h₁₃ : CategoryTheory.Pretriangulated.Triangle.mk u₁₃ v₁₃ w₁₃ CategoryTheory.Pretriangulated.distinguishedTriangles} (h : CategoryTheory.Triangulated.Octahedron comm h₁₂ h₂₃ h₁₃) :
    @[simp]
    theorem CategoryTheory.Triangulated.Octahedron.triangle_mor₁ {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Preadditive C] [CategoryTheory.Limits.HasZeroObject C] [CategoryTheory.HasShift C ] [∀ (n : ), CategoryTheory.Functor.Additive (CategoryTheory.shiftFunctor C n)] [CategoryTheory.Pretriangulated C] {X₁ : C} {X₂ : C} {X₃ : C} {Z₁₂ : C} {Z₂₃ : C} {Z₁₃ : C} {u₁₂ : X₁ X₂} {u₂₃ : X₂ X₃} {u₁₃ : X₁ X₃} (comm : CategoryTheory.CategoryStruct.comp u₁₂ u₂₃ = u₁₃) {v₁₂ : X₂ Z₁₂} {w₁₂ : Z₁₂ (CategoryTheory.shiftFunctor C 1).toPrefunctor.obj X₁} {h₁₂ : CategoryTheory.Pretriangulated.Triangle.mk u₁₂ v₁₂ w₁₂ CategoryTheory.Pretriangulated.distinguishedTriangles} {v₂₃ : X₃ Z₂₃} {w₂₃ : Z₂₃ (CategoryTheory.shiftFunctor C 1).toPrefunctor.obj X₂} {h₂₃ : CategoryTheory.Pretriangulated.Triangle.mk u₂₃ v₂₃ w₂₃ CategoryTheory.Pretriangulated.distinguishedTriangles} {v₁₃ : X₃ Z₁₃} {w₁₃ : Z₁₃ (CategoryTheory.shiftFunctor C 1).toPrefunctor.obj X₁} {h₁₃ : CategoryTheory.Pretriangulated.Triangle.mk u₁₃ v₁₃ w₁₃ CategoryTheory.Pretriangulated.distinguishedTriangles} (h : CategoryTheory.Triangulated.Octahedron comm h₁₂ h₂₃ h₁₃) :
    @[simp]
    theorem CategoryTheory.Triangulated.Octahedron.triangle_obj₂ {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Preadditive C] [CategoryTheory.Limits.HasZeroObject C] [CategoryTheory.HasShift C ] [∀ (n : ), CategoryTheory.Functor.Additive (CategoryTheory.shiftFunctor C n)] [CategoryTheory.Pretriangulated C] {X₁ : C} {X₂ : C} {X₃ : C} {Z₁₂ : C} {Z₂₃ : C} {Z₁₃ : C} {u₁₂ : X₁ X₂} {u₂₃ : X₂ X₃} {u₁₃ : X₁ X₃} (comm : CategoryTheory.CategoryStruct.comp u₁₂ u₂₃ = u₁₃) {v₁₂ : X₂ Z₁₂} {w₁₂ : Z₁₂ (CategoryTheory.shiftFunctor C 1).toPrefunctor.obj X₁} {h₁₂ : CategoryTheory.Pretriangulated.Triangle.mk u₁₂ v₁₂ w₁₂ CategoryTheory.Pretriangulated.distinguishedTriangles} {v₂₃ : X₃ Z₂₃} {w₂₃ : Z₂₃ (CategoryTheory.shiftFunctor C 1).toPrefunctor.obj X₂} {h₂₃ : CategoryTheory.Pretriangulated.Triangle.mk u₂₃ v₂₃ w₂₃ CategoryTheory.Pretriangulated.distinguishedTriangles} {v₁₃ : X₃ Z₁₃} {w₁₃ : Z₁₃ (CategoryTheory.shiftFunctor C 1).toPrefunctor.obj X₁} {h₁₃ : CategoryTheory.Pretriangulated.Triangle.mk u₁₃ v₁₃ w₁₃ CategoryTheory.Pretriangulated.distinguishedTriangles} (h : CategoryTheory.Triangulated.Octahedron comm h₁₂ h₂₃ h₁₃) :
    @[simp]
    theorem CategoryTheory.Triangulated.Octahedron.triangle_mor₂ {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Preadditive C] [CategoryTheory.Limits.HasZeroObject C] [CategoryTheory.HasShift C ] [∀ (n : ), CategoryTheory.Functor.Additive (CategoryTheory.shiftFunctor C n)] [CategoryTheory.Pretriangulated C] {X₁ : C} {X₂ : C} {X₃ : C} {Z₁₂ : C} {Z₂₃ : C} {Z₁₃ : C} {u₁₂ : X₁ X₂} {u₂₃ : X₂ X₃} {u₁₃ : X₁ X₃} (comm : CategoryTheory.CategoryStruct.comp u₁₂ u₂₃ = u₁₃) {v₁₂ : X₂ Z₁₂} {w₁₂ : Z₁₂ (CategoryTheory.shiftFunctor C 1).toPrefunctor.obj X₁} {h₁₂ : CategoryTheory.Pretriangulated.Triangle.mk u₁₂ v₁₂ w₁₂ CategoryTheory.Pretriangulated.distinguishedTriangles} {v₂₃ : X₃ Z₂₃} {w₂₃ : Z₂₃ (CategoryTheory.shiftFunctor C 1).toPrefunctor.obj X₂} {h₂₃ : CategoryTheory.Pretriangulated.Triangle.mk u₂₃ v₂₃ w₂₃ CategoryTheory.Pretriangulated.distinguishedTriangles} {v₁₃ : X₃ Z₁₃} {w₁₃ : Z₁₃ (CategoryTheory.shiftFunctor C 1).toPrefunctor.obj X₁} {h₁₃ : CategoryTheory.Pretriangulated.Triangle.mk u₁₃ v₁₃ w₁₃ CategoryTheory.Pretriangulated.distinguishedTriangles} (h : CategoryTheory.Triangulated.Octahedron comm h₁₂ h₂₃ h₁₃) :
    @[simp]
    theorem CategoryTheory.Triangulated.Octahedron.triangle_obj₁ {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Preadditive C] [CategoryTheory.Limits.HasZeroObject C] [CategoryTheory.HasShift C ] [∀ (n : ), CategoryTheory.Functor.Additive (CategoryTheory.shiftFunctor C n)] [CategoryTheory.Pretriangulated C] {X₁ : C} {X₂ : C} {X₃ : C} {Z₁₂ : C} {Z₂₃ : C} {Z₁₃ : C} {u₁₂ : X₁ X₂} {u₂₃ : X₂ X₃} {u₁₃ : X₁ X₃} (comm : CategoryTheory.CategoryStruct.comp u₁₂ u₂₃ = u₁₃) {v₁₂ : X₂ Z₁₂} {w₁₂ : Z₁₂ (CategoryTheory.shiftFunctor C 1).toPrefunctor.obj X₁} {h₁₂ : CategoryTheory.Pretriangulated.Triangle.mk u₁₂ v₁₂ w₁₂ CategoryTheory.Pretriangulated.distinguishedTriangles} {v₂₃ : X₃ Z₂₃} {w₂₃ : Z₂₃ (CategoryTheory.shiftFunctor C 1).toPrefunctor.obj X₂} {h₂₃ : CategoryTheory.Pretriangulated.Triangle.mk u₂₃ v₂₃ w₂₃ CategoryTheory.Pretriangulated.distinguishedTriangles} {v₁₃ : X₃ Z₁₃} {w₁₃ : Z₁₃ (CategoryTheory.shiftFunctor C 1).toPrefunctor.obj X₁} {h₁₃ : CategoryTheory.Pretriangulated.Triangle.mk u₁₃ v₁₃ w₁₃ CategoryTheory.Pretriangulated.distinguishedTriangles} (h : CategoryTheory.Triangulated.Octahedron comm h₁₂ h₂₃ h₁₃) :
    @[simp]
    theorem CategoryTheory.Triangulated.Octahedron.triangle_obj₃ {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Preadditive C] [CategoryTheory.Limits.HasZeroObject C] [CategoryTheory.HasShift C ] [∀ (n : ), CategoryTheory.Functor.Additive (CategoryTheory.shiftFunctor C n)] [CategoryTheory.Pretriangulated C] {X₁ : C} {X₂ : C} {X₃ : C} {Z₁₂ : C} {Z₂₃ : C} {Z₁₃ : C} {u₁₂ : X₁ X₂} {u₂₃ : X₂ X₃} {u₁₃ : X₁ X₃} (comm : CategoryTheory.CategoryStruct.comp u₁₂ u₂₃ = u₁₃) {v₁₂ : X₂ Z₁₂} {w₁₂ : Z₁₂ (CategoryTheory.shiftFunctor C 1).toPrefunctor.obj X₁} {h₁₂ : CategoryTheory.Pretriangulated.Triangle.mk u₁₂ v₁₂ w₁₂ CategoryTheory.Pretriangulated.distinguishedTriangles} {v₂₃ : X₃ Z₂₃} {w₂₃ : Z₂₃ (CategoryTheory.shiftFunctor C 1).toPrefunctor.obj X₂} {h₂₃ : CategoryTheory.Pretriangulated.Triangle.mk u₂₃ v₂₃ w₂₃ CategoryTheory.Pretriangulated.distinguishedTriangles} {v₁₃ : X₃ Z₁₃} {w₁₃ : Z₁₃ (CategoryTheory.shiftFunctor C 1).toPrefunctor.obj X₁} {h₁₃ : CategoryTheory.Pretriangulated.Triangle.mk u₁₃ v₁₃ w₁₃ CategoryTheory.Pretriangulated.distinguishedTriangles} (h : CategoryTheory.Triangulated.Octahedron comm h₁₂ h₂₃ h₁₃) :
    def CategoryTheory.Triangulated.Octahedron.triangle {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Preadditive C] [CategoryTheory.Limits.HasZeroObject C] [CategoryTheory.HasShift C ] [∀ (n : ), CategoryTheory.Functor.Additive (CategoryTheory.shiftFunctor C n)] [CategoryTheory.Pretriangulated C] {X₁ : C} {X₂ : C} {X₃ : C} {Z₁₂ : C} {Z₂₃ : C} {Z₁₃ : C} {u₁₂ : X₁ X₂} {u₂₃ : X₂ X₃} {u₁₃ : X₁ X₃} (comm : CategoryTheory.CategoryStruct.comp u₁₂ u₂₃ = u₁₃) {v₁₂ : X₂ Z₁₂} {w₁₂ : Z₁₂ (CategoryTheory.shiftFunctor C 1).toPrefunctor.obj X₁} {h₁₂ : CategoryTheory.Pretriangulated.Triangle.mk u₁₂ v₁₂ w₁₂ CategoryTheory.Pretriangulated.distinguishedTriangles} {v₂₃ : X₃ Z₂₃} {w₂₃ : Z₂₃ (CategoryTheory.shiftFunctor C 1).toPrefunctor.obj X₂} {h₂₃ : CategoryTheory.Pretriangulated.Triangle.mk u₂₃ v₂₃ w₂₃ CategoryTheory.Pretriangulated.distinguishedTriangles} {v₁₃ : X₃ Z₁₃} {w₁₃ : Z₁₃ (CategoryTheory.shiftFunctor C 1).toPrefunctor.obj X₁} {h₁₃ : CategoryTheory.Pretriangulated.Triangle.mk u₁₃ v₁₃ w₁₃ CategoryTheory.Pretriangulated.distinguishedTriangles} (h : CategoryTheory.Triangulated.Octahedron comm h₁₂ h₂₃ h₁₃) :

    The triangle Z₁₂ ⟶ Z₁₃ ⟶ Z₂₃ ⟶ Z₁₂⟦1⟧ given by an octahedron.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[simp]
      theorem CategoryTheory.Triangulated.Octahedron.triangleMorphism₁_hom₂ {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Preadditive C] [CategoryTheory.Limits.HasZeroObject C] [CategoryTheory.HasShift C ] [∀ (n : ), CategoryTheory.Functor.Additive (CategoryTheory.shiftFunctor C n)] [CategoryTheory.Pretriangulated C] {X₁ : C} {X₂ : C} {X₃ : C} {Z₁₂ : C} {Z₂₃ : C} {Z₁₃ : C} {u₁₂ : X₁ X₂} {u₂₃ : X₂ X₃} {u₁₃ : X₁ X₃} (comm : CategoryTheory.CategoryStruct.comp u₁₂ u₂₃ = u₁₃) {v₁₂ : X₂ Z₁₂} {w₁₂ : Z₁₂ (CategoryTheory.shiftFunctor C 1).toPrefunctor.obj X₁} {h₁₂ : CategoryTheory.Pretriangulated.Triangle.mk u₁₂ v₁₂ w₁₂ CategoryTheory.Pretriangulated.distinguishedTriangles} {v₂₃ : X₃ Z₂₃} {w₂₃ : Z₂₃ (CategoryTheory.shiftFunctor C 1).toPrefunctor.obj X₂} {h₂₃ : CategoryTheory.Pretriangulated.Triangle.mk u₂₃ v₂₃ w₂₃ CategoryTheory.Pretriangulated.distinguishedTriangles} {v₁₃ : X₃ Z₁₃} {w₁₃ : Z₁₃ (CategoryTheory.shiftFunctor C 1).toPrefunctor.obj X₁} {h₁₃ : CategoryTheory.Pretriangulated.Triangle.mk u₁₃ v₁₃ w₁₃ CategoryTheory.Pretriangulated.distinguishedTriangles} (h : CategoryTheory.Triangulated.Octahedron comm h₁₂ h₂₃ h₁₃) :
      @[simp]
      theorem CategoryTheory.Triangulated.Octahedron.triangleMorphism₁_hom₃ {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Preadditive C] [CategoryTheory.Limits.HasZeroObject C] [CategoryTheory.HasShift C ] [∀ (n : ), CategoryTheory.Functor.Additive (CategoryTheory.shiftFunctor C n)] [CategoryTheory.Pretriangulated C] {X₁ : C} {X₂ : C} {X₃ : C} {Z₁₂ : C} {Z₂₃ : C} {Z₁₃ : C} {u₁₂ : X₁ X₂} {u₂₃ : X₂ X₃} {u₁₃ : X₁ X₃} (comm : CategoryTheory.CategoryStruct.comp u₁₂ u₂₃ = u₁₃) {v₁₂ : X₂ Z₁₂} {w₁₂ : Z₁₂ (CategoryTheory.shiftFunctor C 1).toPrefunctor.obj X₁} {h₁₂ : CategoryTheory.Pretriangulated.Triangle.mk u₁₂ v₁₂ w₁₂ CategoryTheory.Pretriangulated.distinguishedTriangles} {v₂₃ : X₃ Z₂₃} {w₂₃ : Z₂₃ (CategoryTheory.shiftFunctor C 1).toPrefunctor.obj X₂} {h₂₃ : CategoryTheory.Pretriangulated.Triangle.mk u₂₃ v₂₃ w₂₃ CategoryTheory.Pretriangulated.distinguishedTriangles} {v₁₃ : X₃ Z₁₃} {w₁₃ : Z₁₃ (CategoryTheory.shiftFunctor C 1).toPrefunctor.obj X₁} {h₁₃ : CategoryTheory.Pretriangulated.Triangle.mk u₁₃ v₁₃ w₁₃ CategoryTheory.Pretriangulated.distinguishedTriangles} (h : CategoryTheory.Triangulated.Octahedron comm h₁₂ h₂₃ h₁₃) :
      @[simp]
      theorem CategoryTheory.Triangulated.Octahedron.triangleMorphism₁_hom₁ {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Preadditive C] [CategoryTheory.Limits.HasZeroObject C] [CategoryTheory.HasShift C ] [∀ (n : ), CategoryTheory.Functor.Additive (CategoryTheory.shiftFunctor C n)] [CategoryTheory.Pretriangulated C] {X₁ : C} {X₂ : C} {X₃ : C} {Z₁₂ : C} {Z₂₃ : C} {Z₁₃ : C} {u₁₂ : X₁ X₂} {u₂₃ : X₂ X₃} {u₁₃ : X₁ X₃} (comm : CategoryTheory.CategoryStruct.comp u₁₂ u₂₃ = u₁₃) {v₁₂ : X₂ Z₁₂} {w₁₂ : Z₁₂ (CategoryTheory.shiftFunctor C 1).toPrefunctor.obj X₁} {h₁₂ : CategoryTheory.Pretriangulated.Triangle.mk u₁₂ v₁₂ w₁₂ CategoryTheory.Pretriangulated.distinguishedTriangles} {v₂₃ : X₃ Z₂₃} {w₂₃ : Z₂₃ (CategoryTheory.shiftFunctor C 1).toPrefunctor.obj X₂} {h₂₃ : CategoryTheory.Pretriangulated.Triangle.mk u₂₃ v₂₃ w₂₃ CategoryTheory.Pretriangulated.distinguishedTriangles} {v₁₃ : X₃ Z₁₃} {w₁₃ : Z₁₃ (CategoryTheory.shiftFunctor C 1).toPrefunctor.obj X₁} {h₁₃ : CategoryTheory.Pretriangulated.Triangle.mk u₁₃ v₁₃ w₁₃ CategoryTheory.Pretriangulated.distinguishedTriangles} (h : CategoryTheory.Triangulated.Octahedron comm h₁₂ h₂₃ h₁₃) :
      def CategoryTheory.Triangulated.Octahedron.triangleMorphism₁ {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Preadditive C] [CategoryTheory.Limits.HasZeroObject C] [CategoryTheory.HasShift C ] [∀ (n : ), CategoryTheory.Functor.Additive (CategoryTheory.shiftFunctor C n)] [CategoryTheory.Pretriangulated C] {X₁ : C} {X₂ : C} {X₃ : C} {Z₁₂ : C} {Z₂₃ : C} {Z₁₃ : C} {u₁₂ : X₁ X₂} {u₂₃ : X₂ X₃} {u₁₃ : X₁ X₃} (comm : CategoryTheory.CategoryStruct.comp u₁₂ u₂₃ = u₁₃) {v₁₂ : X₂ Z₁₂} {w₁₂ : Z₁₂ (CategoryTheory.shiftFunctor C 1).toPrefunctor.obj X₁} {h₁₂ : CategoryTheory.Pretriangulated.Triangle.mk u₁₂ v₁₂ w₁₂ CategoryTheory.Pretriangulated.distinguishedTriangles} {v₂₃ : X₃ Z₂₃} {w₂₃ : Z₂₃ (CategoryTheory.shiftFunctor C 1).toPrefunctor.obj X₂} {h₂₃ : CategoryTheory.Pretriangulated.Triangle.mk u₂₃ v₂₃ w₂₃ CategoryTheory.Pretriangulated.distinguishedTriangles} {v₁₃ : X₃ Z₁₃} {w₁₃ : Z₁₃ (CategoryTheory.shiftFunctor C 1).toPrefunctor.obj X₁} {h₁₃ : CategoryTheory.Pretriangulated.Triangle.mk u₁₃ v₁₃ w₁₃ CategoryTheory.Pretriangulated.distinguishedTriangles} (h : CategoryTheory.Triangulated.Octahedron comm h₁₂ h₂₃ h₁₃) :

      The first morphism of triangles given by an octahedron.

      Equations
      Instances For
        @[simp]
        theorem CategoryTheory.Triangulated.Octahedron.triangleMorphism₂_hom₁ {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Preadditive C] [CategoryTheory.Limits.HasZeroObject C] [CategoryTheory.HasShift C ] [∀ (n : ), CategoryTheory.Functor.Additive (CategoryTheory.shiftFunctor C n)] [CategoryTheory.Pretriangulated C] {X₁ : C} {X₂ : C} {X₃ : C} {Z₁₂ : C} {Z₂₃ : C} {Z₁₃ : C} {u₁₂ : X₁ X₂} {u₂₃ : X₂ X₃} {u₁₃ : X₁ X₃} (comm : CategoryTheory.CategoryStruct.comp u₁₂ u₂₃ = u₁₃) {v₁₂ : X₂ Z₁₂} {w₁₂ : Z₁₂ (CategoryTheory.shiftFunctor C 1).toPrefunctor.obj X₁} {h₁₂ : CategoryTheory.Pretriangulated.Triangle.mk u₁₂ v₁₂ w₁₂ CategoryTheory.Pretriangulated.distinguishedTriangles} {v₂₃ : X₃ Z₂₃} {w₂₃ : Z₂₃ (CategoryTheory.shiftFunctor C 1).toPrefunctor.obj X₂} {h₂₃ : CategoryTheory.Pretriangulated.Triangle.mk u₂₃ v₂₃ w₂₃ CategoryTheory.Pretriangulated.distinguishedTriangles} {v₁₃ : X₃ Z₁₃} {w₁₃ : Z₁₃ (CategoryTheory.shiftFunctor C 1).toPrefunctor.obj X₁} {h₁₃ : CategoryTheory.Pretriangulated.Triangle.mk u₁₃ v₁₃ w₁₃ CategoryTheory.Pretriangulated.distinguishedTriangles} (h : CategoryTheory.Triangulated.Octahedron comm h₁₂ h₂₃ h₁₃) :
        @[simp]
        theorem CategoryTheory.Triangulated.Octahedron.triangleMorphism₂_hom₂ {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Preadditive C] [CategoryTheory.Limits.HasZeroObject C] [CategoryTheory.HasShift C ] [∀ (n : ), CategoryTheory.Functor.Additive (CategoryTheory.shiftFunctor C n)] [CategoryTheory.Pretriangulated C] {X₁ : C} {X₂ : C} {X₃ : C} {Z₁₂ : C} {Z₂₃ : C} {Z₁₃ : C} {u₁₂ : X₁ X₂} {u₂₃ : X₂ X₃} {u₁₃ : X₁ X₃} (comm : CategoryTheory.CategoryStruct.comp u₁₂ u₂₃ = u₁₃) {v₁₂ : X₂ Z₁₂} {w₁₂ : Z₁₂ (CategoryTheory.shiftFunctor C 1).toPrefunctor.obj X₁} {h₁₂ : CategoryTheory.Pretriangulated.Triangle.mk u₁₂ v₁₂ w₁₂ CategoryTheory.Pretriangulated.distinguishedTriangles} {v₂₃ : X₃ Z₂₃} {w₂₃ : Z₂₃ (CategoryTheory.shiftFunctor C 1).toPrefunctor.obj X₂} {h₂₃ : CategoryTheory.Pretriangulated.Triangle.mk u₂₃ v₂₃ w₂₃ CategoryTheory.Pretriangulated.distinguishedTriangles} {v₁₃ : X₃ Z₁₃} {w₁₃ : Z₁₃ (CategoryTheory.shiftFunctor C 1).toPrefunctor.obj X₁} {h₁₃ : CategoryTheory.Pretriangulated.Triangle.mk u₁₃ v₁₃ w₁₃ CategoryTheory.Pretriangulated.distinguishedTriangles} (h : CategoryTheory.Triangulated.Octahedron comm h₁₂ h₂₃ h₁₃) :
        @[simp]
        theorem CategoryTheory.Triangulated.Octahedron.triangleMorphism₂_hom₃ {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Preadditive C] [CategoryTheory.Limits.HasZeroObject C] [CategoryTheory.HasShift C ] [∀ (n : ), CategoryTheory.Functor.Additive (CategoryTheory.shiftFunctor C n)] [CategoryTheory.Pretriangulated C] {X₁ : C} {X₂ : C} {X₃ : C} {Z₁₂ : C} {Z₂₃ : C} {Z₁₃ : C} {u₁₂ : X₁ X₂} {u₂₃ : X₂ X₃} {u₁₃ : X₁ X₃} (comm : CategoryTheory.CategoryStruct.comp u₁₂ u₂₃ = u₁₃) {v₁₂ : X₂ Z₁₂} {w₁₂ : Z₁₂ (CategoryTheory.shiftFunctor C 1).toPrefunctor.obj X₁} {h₁₂ : CategoryTheory.Pretriangulated.Triangle.mk u₁₂ v₁₂ w₁₂ CategoryTheory.Pretriangulated.distinguishedTriangles} {v₂₃ : X₃ Z₂₃} {w₂₃ : Z₂₃ (CategoryTheory.shiftFunctor C 1).toPrefunctor.obj X₂} {h₂₃ : CategoryTheory.Pretriangulated.Triangle.mk u₂₃ v₂₃ w₂₃ CategoryTheory.Pretriangulated.distinguishedTriangles} {v₁₃ : X₃ Z₁₃} {w₁₃ : Z₁₃ (CategoryTheory.shiftFunctor C 1).toPrefunctor.obj X₁} {h₁₃ : CategoryTheory.Pretriangulated.Triangle.mk u₁₃ v₁₃ w₁₃ CategoryTheory.Pretriangulated.distinguishedTriangles} (h : CategoryTheory.Triangulated.Octahedron comm h₁₂ h₂₃ h₁₃) :
        def CategoryTheory.Triangulated.Octahedron.triangleMorphism₂ {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Preadditive C] [CategoryTheory.Limits.HasZeroObject C] [CategoryTheory.HasShift C ] [∀ (n : ), CategoryTheory.Functor.Additive (CategoryTheory.shiftFunctor C n)] [CategoryTheory.Pretriangulated C] {X₁ : C} {X₂ : C} {X₃ : C} {Z₁₂ : C} {Z₂₃ : C} {Z₁₃ : C} {u₁₂ : X₁ X₂} {u₂₃ : X₂ X₃} {u₁₃ : X₁ X₃} (comm : CategoryTheory.CategoryStruct.comp u₁₂ u₂₃ = u₁₃) {v₁₂ : X₂ Z₁₂} {w₁₂ : Z₁₂ (CategoryTheory.shiftFunctor C 1).toPrefunctor.obj X₁} {h₁₂ : CategoryTheory.Pretriangulated.Triangle.mk u₁₂ v₁₂ w₁₂ CategoryTheory.Pretriangulated.distinguishedTriangles} {v₂₃ : X₃ Z₂₃} {w₂₃ : Z₂₃ (CategoryTheory.shiftFunctor C 1).toPrefunctor.obj X₂} {h₂₃ : CategoryTheory.Pretriangulated.Triangle.mk u₂₃ v₂₃ w₂₃ CategoryTheory.Pretriangulated.distinguishedTriangles} {v₁₃ : X₃ Z₁₃} {w₁₃ : Z₁₃ (CategoryTheory.shiftFunctor C 1).toPrefunctor.obj X₁} {h₁₃ : CategoryTheory.Pretriangulated.Triangle.mk u₁₃ v₁₃ w₁₃ CategoryTheory.Pretriangulated.distinguishedTriangles} (h : CategoryTheory.Triangulated.Octahedron comm h₁₂ h₂₃ h₁₃) :

        The second morphism of triangles given an octahedron.

        Equations
        Instances For

          A triangulated category is a pretriangulated category which satisfies the octahedron axiom (TR 4), see https://stacks.math.columbia.edu/tag/05QK

          Instances
            def CategoryTheory.Triangulated.someOctahedron' {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Preadditive C] [CategoryTheory.Limits.HasZeroObject C] [CategoryTheory.HasShift C ] [∀ (n : ), CategoryTheory.Functor.Additive (CategoryTheory.shiftFunctor C n)] [CategoryTheory.Pretriangulated C] {X₁ : C} {X₂ : C} {X₃ : C} {Z₁₂ : C} {Z₂₃ : C} {Z₁₃ : C} {u₁₂ : X₁ X₂} {u₂₃ : X₂ X₃} {u₁₃ : X₁ X₃} (comm : CategoryTheory.CategoryStruct.comp u₁₂ u₂₃ = u₁₃) {v₁₂ : X₂ Z₁₂} {w₁₂ : Z₁₂ (CategoryTheory.shiftFunctor C 1).toPrefunctor.obj X₁} {h₁₂ : CategoryTheory.Pretriangulated.Triangle.mk u₁₂ v₁₂ w₁₂ CategoryTheory.Pretriangulated.distinguishedTriangles} {v₂₃ : X₃ Z₂₃} {w₂₃ : Z₂₃ (CategoryTheory.shiftFunctor C 1).toPrefunctor.obj X₂} {h₂₃ : CategoryTheory.Pretriangulated.Triangle.mk u₂₃ v₂₃ w₂₃ CategoryTheory.Pretriangulated.distinguishedTriangles} {v₁₃ : X₃ Z₁₃} {w₁₃ : Z₁₃ (CategoryTheory.shiftFunctor C 1).toPrefunctor.obj X₁} {h₁₃ : CategoryTheory.Pretriangulated.Triangle.mk u₁₃ v₁₃ w₁₃ CategoryTheory.Pretriangulated.distinguishedTriangles} [CategoryTheory.IsTriangulated C] :
            CategoryTheory.Triangulated.Octahedron comm h₁₂ h₂₃ h₁₃

            A choice of octahedron given by the octahedron axiom.

            Equations
            Instances For
              def CategoryTheory.Triangulated.someOctahedron {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Preadditive C] [CategoryTheory.Limits.HasZeroObject C] [CategoryTheory.HasShift C ] [∀ (n : ), CategoryTheory.Functor.Additive (CategoryTheory.shiftFunctor C n)] [CategoryTheory.Pretriangulated C] [CategoryTheory.IsTriangulated C] {X₁ : C} {X₂ : C} {X₃ : C} {Z₁₂ : C} {Z₂₃ : C} {Z₁₃ : C} {u₁₂ : X₁ X₂} {u₂₃ : X₂ X₃} {u₁₃ : X₁ X₃} (comm : CategoryTheory.CategoryStruct.comp u₁₂ u₂₃ = u₁₃) {v₁₂ : X₂ Z₁₂} {w₁₂ : Z₁₂ (CategoryTheory.shiftFunctor C 1).toPrefunctor.obj X₁} (h₁₂ : CategoryTheory.Pretriangulated.Triangle.mk u₁₂ v₁₂ w₁₂ CategoryTheory.Pretriangulated.distinguishedTriangles) {v₂₃ : X₃ Z₂₃} {w₂₃ : Z₂₃ (CategoryTheory.shiftFunctor C 1).toPrefunctor.obj X₂} (h₂₃ : CategoryTheory.Pretriangulated.Triangle.mk u₂₃ v₂₃ w₂₃ CategoryTheory.Pretriangulated.distinguishedTriangles) {v₁₃ : X₃ Z₁₃} {w₁₃ : Z₁₃ (CategoryTheory.shiftFunctor C 1).toPrefunctor.obj X₁} (h₁₃ : CategoryTheory.Pretriangulated.Triangle.mk u₁₃ v₁₃ w₁₃ CategoryTheory.Pretriangulated.distinguishedTriangles) :
              CategoryTheory.Triangulated.Octahedron comm h₁₂ h₂₃ h₁₃

              A choice of octahedron given by the octahedron axiom.

              Equations
              Instances For