Ruzsa's covering lemma #
This file proves the Ruzsa covering lemma. This says that, for s
, t
finsets, we can cover s
with at most (s + t).card / t.card
copies of t - t
.
TODO #
Merge this file with other prerequisites to Freiman's theorem once we have them.
theorem
Finset.exists_subset_add_sub
{α : Type u_1}
[DecidableEq α]
[AddCommGroup α]
(s : Finset α)
{t : Finset α}
(ht : t.Nonempty)
:
Ruzsa's covering lemma
theorem
Set.exists_subset_add_sub
{α : Type u_1}
[AddCommGroup α]
{s : Set α}
{t : Set α}
(hs : Set.Finite s)
(ht' : Set.Finite t)
(ht : Set.Nonempty t)
:
Ruzsa's covering lemma. Version for sets. For finsets,
see Finset.exists_subset_add_sub
.
theorem
Set.exists_subset_mul_div
{α : Type u_1}
[CommGroup α]
{s : Set α}
{t : Set α}
(hs : Set.Finite s)
(ht' : Set.Finite t)
(ht : Set.Nonempty t)
:
Ruzsa's covering lemma for sets. See also Finset.exists_subset_mul_div
.