Documentation

Mathlib.Combinatorics.SimpleGraph.Connectivity.Subgraph

Connectivity of subgraphs and induced graphs #

Main definitions #

A subgraph is preconnected if it is preconnected when coerced to be a simple graph.

Note: This is a structure to make it so one can be precise about how dot notation resolves.

Instances For

    A subgraph is connected if it is connected when coerced to be a simple graph.

    Note: This is a structure to make it so one can be precise about how dot notation resolves.

    Instances For
      Equations
      theorem SimpleGraph.Subgraph.Connected.mono' {V : Type u} {G : SimpleGraph V} {H : SimpleGraph.Subgraph G} {H' : SimpleGraph.Subgraph G} (hle : ∀ (v w : V), H.Adj v wH'.Adj v w) (hv : H.verts = H'.verts) (h : SimpleGraph.Subgraph.Connected H) :
      theorem SimpleGraph.Subgraph.Connected.adj_union {V : Type u} {G : SimpleGraph V} {H : SimpleGraph.Subgraph G} {K : SimpleGraph.Subgraph G} (Hconn : SimpleGraph.Subgraph.Connected H) (Kconn : SimpleGraph.Subgraph.Connected K) {u : V} {v : V} (uH : u H.verts) (vK : v K.verts) (huv : G.Adj u v) :
      theorem SimpleGraph.induce_pair_connected_of_adj {V : Type u} {G : SimpleGraph V} {u : V} {v : V} (huv : G.Adj u v) :
      theorem SimpleGraph.induce_connected_adj_union {V : Type u} {G : SimpleGraph V} {v : V} {w : V} {s : Set V} {t : Set V} (sconn : SimpleGraph.Connected (SimpleGraph.induce s G)) (tconn : SimpleGraph.Connected (SimpleGraph.induce t G)) (hv : v s) (hw : w t) (ha : G.Adj v w) :
      theorem SimpleGraph.induce_connected_of_patches {V : Type u} {G : SimpleGraph V} {s : Set V} (u : V) (hu : u s) (patches : ∀ {v : V}, v s∃ s' ⊆ s, ∃ (hu' : u s') (hv' : v s'), SimpleGraph.Reachable (SimpleGraph.induce s' G) { val := u, property := hu' } { val := v, property := hv' }) :
      theorem SimpleGraph.induce_sUnion_connected_of_pairwise_not_disjoint {V : Type u} {G : SimpleGraph V} {S : Set (Set V)} (Sn : Set.Nonempty S) (Snd : ∀ {s t : Set V}, s St SSet.Nonempty (s t)) (Sc : ∀ {s : Set V}, s SSimpleGraph.Connected (SimpleGraph.induce s G)) :
      theorem SimpleGraph.extend_finset_to_connected {V : Type u} {G : SimpleGraph V} (Gpc : SimpleGraph.Preconnected G) {t : Finset V} (tn : t.Nonempty) :
      ∃ (t' : Finset V), t t' SimpleGraph.Connected (SimpleGraph.induce (t') G)