Properties of the ends of graphs #
This file is meant to contain results about the ends of (locally finite connected) graphs.
instance
SimpleGraph.instIsEmptyElemForAllOppositeFinsetObjToQuiverToCategoryStructOppositeSmallCategoryToPreorderPartialOrderTypeToQuiverToCategoryStructTypesToPrefunctorComponentComplFunctorEnd
{V : Type}
(G : SimpleGraph V)
[Finite V]
:
IsEmpty ↑(SimpleGraph.end G)
Equations
- (_ : IsEmpty ↑(SimpleGraph.end G)) = (_ : IsEmpty ↑(SimpleGraph.end G))
theorem
SimpleGraph.end_componentCompl_infinite
{V : Type}
(G : SimpleGraph V)
(e : ↑(SimpleGraph.end G))
(K : (Finset V)ᵒᵖ)
:
The componentCompl
s chosen by an end are all infinite.
instance
SimpleGraph.compononentComplFunctor_nonempty_of_infinite
{V : Type}
(G : SimpleGraph V)
[Infinite V]
(K : (Finset V)ᵒᵖ)
:
Nonempty ((SimpleGraph.componentComplFunctor G).toPrefunctor.obj K)
Equations
- (_ : Nonempty ((SimpleGraph.componentComplFunctor G).toPrefunctor.obj K)) = (_ : Nonempty (SimpleGraph.ComponentCompl G ↑K.unop))
instance
SimpleGraph.componentComplFunctor_finite
{V : Type}
(G : SimpleGraph V)
[SimpleGraph.LocallyFinite G]
[Fact (SimpleGraph.Preconnected G)]
(K : (Finset V)ᵒᵖ)
:
Finite ((SimpleGraph.componentComplFunctor G).toPrefunctor.obj K)
Equations
- (_ : Finite ((SimpleGraph.componentComplFunctor G).toPrefunctor.obj K)) = (_ : Finite (SimpleGraph.ComponentCompl G ↑K.unop))
theorem
SimpleGraph.nonempty_ends_of_infinite
{V : Type}
(G : SimpleGraph V)
[SimpleGraph.LocallyFinite G]
[Fact (SimpleGraph.Preconnected G)]
[Infinite V]
:
A locally finite preconnected infinite graph has at least one end.