Girth of a simple graph #
This file defines the girth of a simple graph as the length of its smallest cycle, or ∞
if the
graph is acyclic.
The girth of a simple graph is the length of its smallest cycle, or ∞
if the graph is acyclic.
Equations
- SimpleGraph.girth G = ⨅ (a : α), ⨅ (w : SimpleGraph.Walk G a a), ⨅ (_ : SimpleGraph.Walk.IsCycle w), ↑(SimpleGraph.Walk.length w)
Instances For
@[simp]
theorem
SimpleGraph.le_girth
{α : Type u_1}
{G : SimpleGraph α}
{n : ℕ∞}
:
n ≤ SimpleGraph.girth G ↔ ∀ (a : α) (w : SimpleGraph.Walk G a a), SimpleGraph.Walk.IsCycle w → n ≤ ↑(SimpleGraph.Walk.length w)
@[simp]
Alias of the reverse direction of SimpleGraph.girth_eq_top
.
theorem
SimpleGraph.exists_girth_eq_length
{α : Type u_1}
{G : SimpleGraph α}
:
(∃ (a : α) (w : SimpleGraph.Walk G a a),
SimpleGraph.Walk.IsCycle w ∧ SimpleGraph.girth G = ↑(SimpleGraph.Walk.length w)) ↔ ¬SimpleGraph.IsAcyclic G