Documentation

Mathlib.Combinatorics.SimpleGraph.Metric

Graph metric #

This module defines the SimpleGraph.dist function, which takes pairs of vertices to the length of the shortest walk between them.

Main definitions #

Todo #

Tags #

graph metric, distance

Metric #

noncomputable def SimpleGraph.dist {V : Type u_1} (G : SimpleGraph V) (u : V) (v : V) :

The distance between two vertices is the length of the shortest walk between them. If no such walk exists, this uses the junk value of 0.

Equations
Instances For
    theorem SimpleGraph.dist_le {V : Type u_1} {G : SimpleGraph V} {u : V} {v : V} (p : SimpleGraph.Walk G u v) :
    theorem SimpleGraph.dist_self {V : Type u_1} {G : SimpleGraph V} {v : V} :
    theorem SimpleGraph.Reachable.dist_eq_zero_iff {V : Type u_1} {G : SimpleGraph V} {u : V} {v : V} (hr : SimpleGraph.Reachable G u v) :
    SimpleGraph.dist G u v = 0 u = v
    theorem SimpleGraph.Reachable.pos_dist_of_ne {V : Type u_1} {G : SimpleGraph V} {u : V} {v : V} (h : SimpleGraph.Reachable G u v) (hne : u v) :
    theorem SimpleGraph.Connected.dist_eq_zero_iff {V : Type u_1} {G : SimpleGraph V} (hconn : SimpleGraph.Connected G) {u : V} {v : V} :
    SimpleGraph.dist G u v = 0 u = v
    theorem SimpleGraph.Connected.pos_dist_of_ne {V : Type u_1} {G : SimpleGraph V} {u : V} {v : V} (hconn : SimpleGraph.Connected G) (hne : u v) :
    theorem SimpleGraph.dist_eq_zero_of_not_reachable {V : Type u_1} {G : SimpleGraph V} {u : V} {v : V} (h : ¬SimpleGraph.Reachable G u v) :
    theorem SimpleGraph.nonempty_of_pos_dist {V : Type u_1} {G : SimpleGraph V} {u : V} {v : V} (h : 0 < SimpleGraph.dist G u v) :
    Set.Nonempty Set.univ
    theorem SimpleGraph.Connected.dist_triangle {V : Type u_1} {G : SimpleGraph V} (hconn : SimpleGraph.Connected G) {u : V} {v : V} {w : V} :
    theorem SimpleGraph.dist_comm {V : Type u_1} {G : SimpleGraph V} {u : V} {v : V} :