Sums of collections of Finsupp, and their support #
This file provides results about the Finsupp.support
of sums of collections of Finsupp
,
including sums of List
, Multiset
, and Finset
.
The support of the sum is a subset of the union of the supports:
The support of the sum of pairwise disjoint finsupps is equal to the union of the supports
Member in the support of the indexed union over a collection iff it is a member of the support of a member of the collection:
theorem
List.support_sum_subset
{ι : Type u_1}
{M : Type u_2}
[DecidableEq ι]
[AddMonoid M]
(l : List (ι →₀ M))
:
theorem
Multiset.support_sum_subset
{ι : Type u_1}
{M : Type u_2}
[DecidableEq ι]
[AddCommMonoid M]
(s : Multiset (ι →₀ M))
:
(Multiset.sum s).support ⊆ Multiset.sup (Multiset.map Finsupp.support s)
theorem
Finset.support_sum_subset
{ι : Type u_1}
{M : Type u_2}
[DecidableEq ι]
[AddCommMonoid M]
(s : Finset (ι →₀ M))
:
(Finset.sum s id).support ⊆ Finset.sup s Finsupp.support
theorem
Multiset.mem_sup_map_support_iff
{ι : Type u_1}
{M : Type u_2}
[DecidableEq ι]
[Zero M]
{s : Multiset (ι →₀ M)}
{x : ι}
:
x ∈ Multiset.sup (Multiset.map Finsupp.support s) ↔ ∃ f ∈ s, x ∈ f.support
theorem
Finset.mem_sup_support_iff
{ι : Type u_1}
{M : Type u_2}
[DecidableEq ι]
[Zero M]
{s : Finset (ι →₀ M)}
{x : ι}
:
x ∈ Finset.sup s Finsupp.support ↔ ∃ f ∈ s, x ∈ f.support
theorem
List.support_sum_eq
{ι : Type u_1}
{M : Type u_2}
[DecidableEq ι]
[AddMonoid M]
(l : List (ι →₀ M))
(hl : List.Pairwise (Disjoint on Finsupp.support) l)
:
theorem
Multiset.support_sum_eq
{ι : Type u_1}
{M : Type u_2}
[DecidableEq ι]
[AddCommMonoid M]
(s : Multiset (ι →₀ M))
(hs : Multiset.Pairwise (Disjoint on Finsupp.support) s)
:
(Multiset.sum s).support = Multiset.sup (Multiset.map Finsupp.support s)
theorem
Finset.support_sum_eq
{ι : Type u_1}
{M : Type u_2}
[DecidableEq ι]
[AddCommMonoid M]
(s : Finset (ι →₀ M))
(hs : Set.PairwiseDisjoint (↑s) Finsupp.support)
:
(Finset.sum s id).support = Finset.sup s Finsupp.support