Documentation

Mathlib.Data.Finsupp.NeLocus

Locus of unequal values of finitely supported functions #

Let α N be two Types, assume that N has a 0 and let f g : α →₀ N be finitely supported functions.

Main definition #

In the case in which N is an additive group, Finsupp.neLocus f g coincides with Finsupp.support (f - g).

def Finsupp.neLocus {α : Type u_1} {N : Type u_3} [DecidableEq α] [DecidableEq N] [Zero N] (f : α →₀ N) (g : α →₀ N) :

Given two finitely supported functions f g : α →₀ N, Finsupp.neLocus f g is the Finset where f and g differ. This generalizes (f - g).support to situations without subtraction.

Equations
Instances For
    @[simp]
    theorem Finsupp.mem_neLocus {α : Type u_1} {N : Type u_3} [DecidableEq α] [DecidableEq N] [Zero N] {f : α →₀ N} {g : α →₀ N} {a : α} :
    a Finsupp.neLocus f g f a g a
    theorem Finsupp.not_mem_neLocus {α : Type u_1} {N : Type u_3} [DecidableEq α] [DecidableEq N] [Zero N] {f : α →₀ N} {g : α →₀ N} {a : α} :
    aFinsupp.neLocus f g f a = g a
    @[simp]
    theorem Finsupp.coe_neLocus {α : Type u_1} {N : Type u_3} [DecidableEq α] [DecidableEq N] [Zero N] (f : α →₀ N) (g : α →₀ N) :
    (Finsupp.neLocus f g) = {x : α | f x g x}
    @[simp]
    theorem Finsupp.neLocus_eq_empty {α : Type u_1} {N : Type u_3} [DecidableEq α] [DecidableEq N] [Zero N] {f : α →₀ N} {g : α →₀ N} :
    @[simp]
    theorem Finsupp.nonempty_neLocus_iff {α : Type u_1} {N : Type u_3} [DecidableEq α] [DecidableEq N] [Zero N] {f : α →₀ N} {g : α →₀ N} :
    (Finsupp.neLocus f g).Nonempty f g
    theorem Finsupp.neLocus_comm {α : Type u_1} {N : Type u_3} [DecidableEq α] [DecidableEq N] [Zero N] (f : α →₀ N) (g : α →₀ N) :
    @[simp]
    theorem Finsupp.neLocus_zero_right {α : Type u_1} {N : Type u_3} [DecidableEq α] [DecidableEq N] [Zero N] (f : α →₀ N) :
    Finsupp.neLocus f 0 = f.support
    @[simp]
    theorem Finsupp.neLocus_zero_left {α : Type u_1} {N : Type u_3} [DecidableEq α] [DecidableEq N] [Zero N] (f : α →₀ N) :
    Finsupp.neLocus 0 f = f.support
    theorem Finsupp.subset_mapRange_neLocus {α : Type u_1} {M : Type u_2} {N : Type u_3} [DecidableEq α] [DecidableEq N] [Zero N] [DecidableEq M] [Zero M] (f : α →₀ N) (g : α →₀ N) {F : NM} (F0 : F 0 = 0) :
    theorem Finsupp.zipWith_neLocus_eq_left {α : Type u_1} {M : Type u_2} {N : Type u_3} {P : Type u_4} [DecidableEq α] [DecidableEq N] [Zero M] [DecidableEq P] [Zero P] [Zero N] {F : MNP} (F0 : F 0 0 = 0) (f : α →₀ M) (g₁ : α →₀ N) (g₂ : α →₀ N) (hF : ∀ (f : M), Function.Injective fun (g : N) => F f g) :
    Finsupp.neLocus (Finsupp.zipWith F F0 f g₁) (Finsupp.zipWith F F0 f g₂) = Finsupp.neLocus g₁ g₂
    theorem Finsupp.zipWith_neLocus_eq_right {α : Type u_1} {M : Type u_2} {N : Type u_3} {P : Type u_4} [DecidableEq α] [DecidableEq M] [Zero M] [DecidableEq P] [Zero P] [Zero N] {F : MNP} (F0 : F 0 0 = 0) (f₁ : α →₀ M) (f₂ : α →₀ M) (g : α →₀ N) (hF : ∀ (g : N), Function.Injective fun (f : M) => F f g) :
    Finsupp.neLocus (Finsupp.zipWith F F0 f₁ g) (Finsupp.zipWith F F0 f₂ g) = Finsupp.neLocus f₁ f₂
    theorem Finsupp.mapRange_neLocus_eq {α : Type u_1} {M : Type u_2} {N : Type u_3} [DecidableEq α] [DecidableEq N] [DecidableEq M] [Zero M] [Zero N] (f : α →₀ N) (g : α →₀ N) {F : NM} (F0 : F 0 = 0) (hF : Function.Injective F) :
    @[simp]
    theorem Finsupp.neLocus_add_left {α : Type u_1} {N : Type u_3} [DecidableEq α] [DecidableEq N] [AddLeftCancelMonoid N] (f : α →₀ N) (g : α →₀ N) (h : α →₀ N) :
    @[simp]
    theorem Finsupp.neLocus_add_right {α : Type u_1} {N : Type u_3} [DecidableEq α] [DecidableEq N] [AddRightCancelMonoid N] (f : α →₀ N) (g : α →₀ N) (h : α →₀ N) :
    @[simp]
    theorem Finsupp.neLocus_neg_neg {α : Type u_1} {N : Type u_3} [DecidableEq α] [DecidableEq N] [AddGroup N] (f : α →₀ N) (g : α →₀ N) :
    theorem Finsupp.neLocus_neg {α : Type u_1} {N : Type u_3} [DecidableEq α] [DecidableEq N] [AddGroup N] (f : α →₀ N) (g : α →₀ N) :
    theorem Finsupp.neLocus_eq_support_sub {α : Type u_1} {N : Type u_3} [DecidableEq α] [DecidableEq N] [AddGroup N] (f : α →₀ N) (g : α →₀ N) :
    Finsupp.neLocus f g = (f - g).support
    @[simp]
    theorem Finsupp.neLocus_sub_left {α : Type u_1} {N : Type u_3} [DecidableEq α] [DecidableEq N] [AddGroup N] (f : α →₀ N) (g₁ : α →₀ N) (g₂ : α →₀ N) :
    Finsupp.neLocus (f - g₁) (f - g₂) = Finsupp.neLocus g₁ g₂
    @[simp]
    theorem Finsupp.neLocus_sub_right {α : Type u_1} {N : Type u_3} [DecidableEq α] [DecidableEq N] [AddGroup N] (f₁ : α →₀ N) (f₂ : α →₀ N) (g : α →₀ N) :
    Finsupp.neLocus (f₁ - g) (f₂ - g) = Finsupp.neLocus f₁ f₂
    @[simp]
    theorem Finsupp.neLocus_self_add_right {α : Type u_1} {N : Type u_3} [DecidableEq α] [DecidableEq N] [AddGroup N] (f : α →₀ N) (g : α →₀ N) :
    Finsupp.neLocus f (f + g) = g.support
    @[simp]
    theorem Finsupp.neLocus_self_add_left {α : Type u_1} {N : Type u_3} [DecidableEq α] [DecidableEq N] [AddGroup N] (f : α →₀ N) (g : α →₀ N) :
    Finsupp.neLocus (f + g) f = g.support
    @[simp]
    theorem Finsupp.neLocus_self_sub_right {α : Type u_1} {N : Type u_3} [DecidableEq α] [DecidableEq N] [AddGroup N] (f : α →₀ N) (g : α →₀ N) :
    Finsupp.neLocus f (f - g) = g.support
    @[simp]
    theorem Finsupp.neLocus_self_sub_left {α : Type u_1} {N : Type u_3} [DecidableEq α] [DecidableEq N] [AddGroup N] (f : α →₀ N) (g : α →₀ N) :
    Finsupp.neLocus (f - g) f = g.support