The pointwise product on Finsupp
. #
For the convolution product on Finsupp
when the domain has a binary operation,
see the type synonyms AddMonoidAlgebra
(which is in turn used to define Polynomial
and MvPolynomial
)
and MonoidAlgebra
.
The product of f g : α →₀ β
is the finitely supported function
whose value at a
is f a * g a
.
Equations
- Finsupp.instMulFinsuppToZero = { mul := Finsupp.zipWith (fun (x x_1 : β) => x * x_1) (_ : 0 * 0 = 0) }
@[simp]
theorem
Finsupp.mul_apply
{α : Type u₁}
{β : Type u₂}
[MulZeroClass β]
{g₁ : α →₀ β}
{g₂ : α →₀ β}
{a : α}
:
@[simp]
theorem
Finsupp.single_mul
{α : Type u₁}
{β : Type u₂}
[MulZeroClass β]
(a : α)
(b₁ : β)
(b₂ : β)
:
Finsupp.single a (b₁ * b₂) = Finsupp.single a b₁ * Finsupp.single a b₂
theorem
Finsupp.support_mul
{α : Type u₁}
{β : Type u₂}
[MulZeroClass β]
[DecidableEq α]
{g₁ : α →₀ β}
{g₂ : α →₀ β}
:
instance
Finsupp.instMulZeroClassFinsuppToZero
{α : Type u₁}
{β : Type u₂}
[MulZeroClass β]
:
MulZeroClass (α →₀ β)
Equations
- One or more equations did not get rendered due to their size.
instance
Finsupp.instSemigroupWithZeroFinsuppToZero
{α : Type u₁}
{β : Type u₂}
[SemigroupWithZero β]
:
SemigroupWithZero (α →₀ β)
Equations
- One or more equations did not get rendered due to their size.
instance
Finsupp.instNonUnitalNonAssocSemiringFinsuppToZeroToMulZeroClass
{α : Type u₁}
{β : Type u₂}
[NonUnitalNonAssocSemiring β]
:
NonUnitalNonAssocSemiring (α →₀ β)
Equations
- One or more equations did not get rendered due to their size.
instance
Finsupp.instNonUnitalSemiringFinsuppToZeroToSemigroupWithZero
{α : Type u₁}
{β : Type u₂}
[NonUnitalSemiring β]
:
NonUnitalSemiring (α →₀ β)
Equations
- One or more equations did not get rendered due to their size.
instance
Finsupp.instNonUnitalCommSemiringFinsuppToZeroToSemigroupWithZeroToNonUnitalSemiring
{α : Type u₁}
{β : Type u₂}
[NonUnitalCommSemiring β]
:
NonUnitalCommSemiring (α →₀ β)
Equations
- One or more equations did not get rendered due to their size.
instance
Finsupp.instNonUnitalNonAssocRingFinsuppToZeroToMulZeroClassToNonUnitalNonAssocSemiring
{α : Type u₁}
{β : Type u₂}
[NonUnitalNonAssocRing β]
:
NonUnitalNonAssocRing (α →₀ β)
Equations
- One or more equations did not get rendered due to their size.
instance
Finsupp.instNonUnitalRingFinsuppToZeroToSemigroupWithZeroToNonUnitalSemiring
{α : Type u₁}
{β : Type u₂}
[NonUnitalRing β]
:
NonUnitalRing (α →₀ β)
Equations
- One or more equations did not get rendered due to their size.
instance
Finsupp.instNonUnitalCommRingFinsuppToZeroToSemigroupWithZeroToNonUnitalSemiringToNonUnitalCommSemiring
{α : Type u₁}
{β : Type u₂}
[NonUnitalCommRing β]
:
NonUnitalCommRing (α →₀ β)
Equations
- One or more equations did not get rendered due to their size.
The pointwise multiplicative action of functions on finitely supported functions
Equations
- Finsupp.pointwiseModule = Function.Injective.module (α → β) Finsupp.coeFnAddHom (_ : Function.Injective fun (f : α →₀ β) => ⇑f) (_ : ∀ (f : α → β) (g : α →₀ β), ⇑(f • g) = f • ⇑g)