Sorting a finite type #
This file provides two equivalences for linearly ordered fintypes:
monoEquivOfFin
: Order isomorphism betweenα
andFin (card α)
.finSumEquivOfFinset
: Equivalence betweenα
andFin m ⊕ Fin n
wherem
andn
are respectively the cardinalities of someFinset α
and its complement.
Given a linearly ordered fintype α
of cardinal k
, the order isomorphism
monoEquivOfFin α h
is the increasing bijection between Fin k
and α
. Here, h
is a proof
that the cardinality of α
is k
. We use this instead of an isomorphism Fin (card α) ≃o α
to
avoid casting issues in further uses of this function.
Equations
- monoEquivOfFin α h = OrderIso.trans (Finset.orderIsoOfFin Finset.univ h) (OrderIso.trans (OrderIso.setCongr (↑Finset.univ) Set.univ (_ : ↑Finset.univ = Set.univ)) OrderIso.Set.univ)
Instances For
def
finSumEquivOfFinset
{α : Type u_1}
[DecidableEq α]
[Fintype α]
[LinearOrder α]
{m : ℕ}
{n : ℕ}
{s : Finset α}
(hm : s.card = m)
(hn : sᶜ.card = n)
:
If α
is a linearly ordered fintype, s : Finset α
has cardinality m
and its complement has
cardinality n
, then Fin m ⊕ Fin n ≃ α
. The equivalence sends elements of Fin m
to
elements of s
and elements of Fin n
to elements of sᶜ
while preserving order on each
"half" of Fin m ⊕ Fin n
(using Set.orderIsoOfFin
).
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
finSumEquivOfFinset_inl
{α : Type u_1}
[DecidableEq α]
[Fintype α]
[LinearOrder α]
{m : ℕ}
{n : ℕ}
{s : Finset α}
(hm : s.card = m)
(hn : sᶜ.card = n)
(i : Fin m)
:
(finSumEquivOfFinset hm hn) (Sum.inl i) = (Finset.orderEmbOfFin s hm) i
@[simp]
theorem
finSumEquivOfFinset_inr
{α : Type u_1}
[DecidableEq α]
[Fintype α]
[LinearOrder α]
{m : ℕ}
{n : ℕ}
{s : Finset α}
(hm : s.card = m)
(hn : sᶜ.card = n)
(i : Fin n)
:
(finSumEquivOfFinset hm hn) (Sum.inr i) = (Finset.orderEmbOfFin sᶜ hn) i