Documentation
Mathlib
.
Data
.
Int
.
Dvd
.
Pow
Search
Google site search
return to top
source
Imports
Init
Mathlib.Algebra.GroupPower.Ring
Mathlib.Data.Int.Basic
Mathlib.Data.Nat.Cast.Basic
Imported by
Int
.
sign_pow_bit1
Int
.
pow_dvd_of_le_of_pow_dvd
Int
.
dvd_of_pow_dvd
Basic lemmas about the divisibility relation in
ℤ
involving powers.
#
source
@[simp]
theorem
Int
.
sign_pow_bit1
(k :
ℕ
)
(n :
ℤ
)
:
Int.sign
n
^
bit1
k
=
Int.sign
n
source
theorem
Int
.
pow_dvd_of_le_of_pow_dvd
{p :
ℕ
}
{m :
ℕ
}
{n :
ℕ
}
{k :
ℤ
}
(hmn :
m
≤
n
)
(hdiv :
↑
(
p
^
n
)
∣
k
)
:
↑
(
p
^
m
)
∣
k
source
theorem
Int
.
dvd_of_pow_dvd
{p :
ℕ
}
{k :
ℕ
}
{m :
ℤ
}
(hk :
1
≤
k
)
(hpk :
↑
(
p
^
k
)
∣
m
)
:
↑
p
∣
m