Documentation

Mathlib.Data.Nat.Choose.Central

Central binomial coefficients #

This file proves properties of the central binomial coefficients (that is, Nat.choose (2 * n) n).

Main definition and results #

The central binomial coefficient, Nat.choose (2 * n) n.

Equations
Instances For

    The central binomial coefficient is the largest binomial coefficient.

    theorem Nat.two_le_centralBinom (n : ) (n_pos : 0 < n) :
    theorem Nat.succ_mul_centralBinom_succ (n : ) :
    (n + 1) * Nat.centralBinom (n + 1) = 2 * (2 * n + 1) * Nat.centralBinom n

    An inductive property of the central binomial coefficient.

    theorem Nat.four_pow_lt_mul_centralBinom (n : ) (n_big : 4 n) :

    An exponential lower bound on the central binomial coefficient. This bound is of interest because it appears in Tochiori's refinement of Erdős's proof of Bertrand's postulate.

    An exponential lower bound on the central binomial coefficient. This bound is weaker than Nat.four_pow_lt_mul_centralBinom, but it is of historical interest because it appears in Erdős's proof of Bertrand's postulate.

    A crucial lemma to ensure that Catalan numbers can be defined via their explicit formula catalan n = n.centralBinom / (n + 1).