pow
#
Alias of Nat.pow_le_pow_of_le_left
.
See also pow_left_strictMonoOn
.
theorem
StrictMono.nat_pow
{n : ℕ}
(hn : n ≠ 0)
{f : ℕ → ℕ}
(hf : StrictMono f)
:
StrictMono fun (m : ℕ) => f m ^ n
pow
and mod
/ dvd
#
Deprecated lemmas #
Those lemmas have been deprecated on 2023-12-23.
@[deprecated pow_lt_pow_right]
theorem
Nat.pow_lt_pow_of_lt_right
{R : Type u_3}
[StrictOrderedSemiring R]
{a : R}
{n : ℕ}
{m : ℕ}
(h : 1 < a)
(hmn : m < n)
:
Alias of pow_lt_pow_right
.
@[deprecated pow_right_strictMono]
theorem
Nat.pow_right_strictMono
{R : Type u_3}
[StrictOrderedSemiring R]
{a : R}
(h : 1 < a)
:
StrictMono fun (x : ℕ) => a ^ x
Alias of pow_right_strictMono
.
See also pow_right_strictMono'
.
@[deprecated pow_le_pow_iff_right]
theorem
Nat.pow_le_iff_le_right
{R : Type u_3}
[StrictOrderedSemiring R]
{a : R}
{n : ℕ}
{m : ℕ}
(h : 1 < a)
:
Alias of pow_le_pow_iff_right
.
@[deprecated pow_lt_pow_iff_right]
theorem
Nat.pow_lt_iff_lt_right
{R : Type u_3}
[StrictOrderedSemiring R]
{a : R}
{n : ℕ}
{m : ℕ}
(h : 1 < a)
:
Alias of pow_lt_pow_iff_right
.