Intervals in a pi type #
This file shows that (dependent) functions to locally finite orders equipped with the pointwise order are locally finite and calculates the cardinality of their intervals.
instance
Pi.instLocallyFiniteOrderForAllPreorderToPreorder
{ι : Type u_1}
{α : ι → Type u_2}
[Fintype ι]
[DecidableEq ι]
[(i : ι) → DecidableEq (α i)]
[(i : ι) → PartialOrder (α i)]
[(i : ι) → LocallyFiniteOrder (α i)]
:
LocallyFiniteOrder ((i : ι) → α i)
Equations
- One or more equations did not get rendered due to their size.
theorem
Pi.Icc_eq
{ι : Type u_1}
{α : ι → Type u_2}
[Fintype ι]
[DecidableEq ι]
[(i : ι) → DecidableEq (α i)]
[(i : ι) → PartialOrder (α i)]
[(i : ι) → LocallyFiniteOrder (α i)]
(a : (i : ι) → α i)
(b : (i : ι) → α i)
:
Finset.Icc a b = Fintype.piFinset fun (i : ι) => Finset.Icc (a i) (b i)
theorem
Pi.card_Icc
{ι : Type u_1}
{α : ι → Type u_2}
[Fintype ι]
[DecidableEq ι]
[(i : ι) → DecidableEq (α i)]
[(i : ι) → PartialOrder (α i)]
[(i : ι) → LocallyFiniteOrder (α i)]
(a : (i : ι) → α i)
(b : (i : ι) → α i)
:
(Finset.Icc a b).card = Finset.prod Finset.univ fun (i : ι) => (Finset.Icc (a i) (b i)).card
theorem
Pi.card_Ico
{ι : Type u_1}
{α : ι → Type u_2}
[Fintype ι]
[DecidableEq ι]
[(i : ι) → DecidableEq (α i)]
[(i : ι) → PartialOrder (α i)]
[(i : ι) → LocallyFiniteOrder (α i)]
(a : (i : ι) → α i)
(b : (i : ι) → α i)
:
(Finset.Ico a b).card = (Finset.prod Finset.univ fun (i : ι) => (Finset.Icc (a i) (b i)).card) - 1
theorem
Pi.card_Ioc
{ι : Type u_1}
{α : ι → Type u_2}
[Fintype ι]
[DecidableEq ι]
[(i : ι) → DecidableEq (α i)]
[(i : ι) → PartialOrder (α i)]
[(i : ι) → LocallyFiniteOrder (α i)]
(a : (i : ι) → α i)
(b : (i : ι) → α i)
:
(Finset.Ioc a b).card = (Finset.prod Finset.univ fun (i : ι) => (Finset.Icc (a i) (b i)).card) - 1
theorem
Pi.card_Ioo
{ι : Type u_1}
{α : ι → Type u_2}
[Fintype ι]
[DecidableEq ι]
[(i : ι) → DecidableEq (α i)]
[(i : ι) → PartialOrder (α i)]
[(i : ι) → LocallyFiniteOrder (α i)]
(a : (i : ι) → α i)
(b : (i : ι) → α i)
:
(Finset.Ioo a b).card = (Finset.prod Finset.univ fun (i : ι) => (Finset.Icc (a i) (b i)).card) - 2
instance
Pi.instLocallyFiniteOrderBotForAllPreorderToPreorder
{ι : Type u_1}
{α : ι → Type u_2}
[Fintype ι]
[DecidableEq ι]
[(i : ι) → DecidableEq (α i)]
[(i : ι) → PartialOrder (α i)]
[(i : ι) → LocallyFiniteOrderBot (α i)]
:
LocallyFiniteOrderBot ((i : ι) → α i)
Equations
- One or more equations did not get rendered due to their size.
theorem
Pi.card_Iic
{ι : Type u_1}
{α : ι → Type u_2}
[Fintype ι]
[DecidableEq ι]
[(i : ι) → DecidableEq (α i)]
[(i : ι) → PartialOrder (α i)]
[(i : ι) → LocallyFiniteOrderBot (α i)]
(b : (i : ι) → α i)
:
(Finset.Iic b).card = Finset.prod Finset.univ fun (i : ι) => (Finset.Iic (b i)).card
theorem
Pi.card_Iio
{ι : Type u_1}
{α : ι → Type u_2}
[Fintype ι]
[DecidableEq ι]
[(i : ι) → DecidableEq (α i)]
[(i : ι) → PartialOrder (α i)]
[(i : ι) → LocallyFiniteOrderBot (α i)]
(b : (i : ι) → α i)
:
(Finset.Iio b).card = (Finset.prod Finset.univ fun (i : ι) => (Finset.Iic (b i)).card) - 1
instance
Pi.instLocallyFiniteOrderTopForAllPreorderToPreorder
{ι : Type u_1}
{α : ι → Type u_2}
[Fintype ι]
[DecidableEq ι]
[(i : ι) → DecidableEq (α i)]
[(i : ι) → PartialOrder (α i)]
[(i : ι) → LocallyFiniteOrderTop (α i)]
:
LocallyFiniteOrderTop ((i : ι) → α i)
Equations
- One or more equations did not get rendered due to their size.
theorem
Pi.card_Ici
{ι : Type u_1}
{α : ι → Type u_2}
[Fintype ι]
[DecidableEq ι]
[(i : ι) → DecidableEq (α i)]
[(i : ι) → PartialOrder (α i)]
[(i : ι) → LocallyFiniteOrderTop (α i)]
(a : (i : ι) → α i)
:
(Finset.Ici a).card = Finset.prod Finset.univ fun (i : ι) => (Finset.Ici (a i)).card
theorem
Pi.card_Ioi
{ι : Type u_1}
{α : ι → Type u_2}
[Fintype ι]
[DecidableEq ι]
[(i : ι) → DecidableEq (α i)]
[(i : ι) → PartialOrder (α i)]
[(i : ι) → LocallyFiniteOrderTop (α i)]
(a : (i : ι) → α i)
:
(Finset.Ioi a).card = (Finset.prod Finset.univ fun (i : ι) => (Finset.Ici (a i)).card) - 1
theorem
Pi.uIcc_eq
{ι : Type u_1}
{α : ι → Type u_2}
[Fintype ι]
[DecidableEq ι]
[(i : ι) → DecidableEq (α i)]
[(i : ι) → Lattice (α i)]
[(i : ι) → LocallyFiniteOrder (α i)]
(a : (i : ι) → α i)
(b : (i : ι) → α i)
:
Finset.uIcc a b = Fintype.piFinset fun (i : ι) => Finset.uIcc (a i) (b i)
theorem
Pi.card_uIcc
{ι : Type u_1}
{α : ι → Type u_2}
[Fintype ι]
[DecidableEq ι]
[(i : ι) → DecidableEq (α i)]
[(i : ι) → Lattice (α i)]
[(i : ι) → LocallyFiniteOrder (α i)]
(a : (i : ι) → α i)
(b : (i : ι) → α i)
:
(Finset.uIcc a b).card = Finset.prod Finset.univ fun (i : ι) => (Finset.uIcc (a i) (b i)).card