Real conjugate exponents #
p.IsConjugateExponent q registers the fact that the real numbers p and q are > 1 and
satisfy 1/p + 1/q = 1. This property shows up often in analysis, especially when dealing with
L^p spaces.
We make several basic facts available through dot notation in this situation.
We also introduce p.conjugateExponent for p / (p-1). When p > 1, it is conjugate to p.
Two real exponents p, q are conjugate if they are > 1 and satisfy the equality
1/p + 1/q = 1. This condition shows up in many theorems in analysis, notably related to L^p
norms.
- one_lt : 1 < p
Instances For
The conjugate exponent of p is q = p/(p-1), so that 1/p + 1/q = 1.
Equations
- Real.conjugateExponent p = p / (p - 1)
Instances For
theorem
Real.IsConjugateExponent.sub_one_ne_zero
{p : ℝ}
{q : ℝ}
(h : Real.IsConjugateExponent p q)
:
theorem
Real.IsConjugateExponent.one_div_nonneg
{p : ℝ}
{q : ℝ}
(h : Real.IsConjugateExponent p q)
:
theorem
Real.IsConjugateExponent.one_div_ne_zero
{p : ℝ}
{q : ℝ}
(h : Real.IsConjugateExponent p q)
:
theorem
Real.IsConjugateExponent.sub_one_mul_conj
{p : ℝ}
{q : ℝ}
(h : Real.IsConjugateExponent p q)
:
theorem
Real.IsConjugateExponent.div_conj_eq_sub_one
{p : ℝ}
{q : ℝ}
(h : Real.IsConjugateExponent p q)
:
theorem
Real.IsConjugateExponent.one_lt_nnreal
{p : ℝ}
{q : ℝ}
(h : Real.IsConjugateExponent p q)
:
1 < Real.toNNReal p
theorem
Real.IsConjugateExponent.inv_add_inv_conj_nnreal
{p : ℝ}
{q : ℝ}
(h : Real.IsConjugateExponent p q)
:
1 / Real.toNNReal p + 1 / Real.toNNReal q = 1
theorem
Real.IsConjugateExponent.inv_add_inv_conj_ennreal
{p : ℝ}
{q : ℝ}
(h : Real.IsConjugateExponent p q)
:
1 / ENNReal.ofReal p + 1 / ENNReal.ofReal q = 1
theorem
Real.isConjugateExponent_iff
{p : ℝ}
{q : ℝ}
(h : 1 < p)
:
Real.IsConjugateExponent p q ↔ q = p / (p - 1)