Documentation

Mathlib.Data.UInt

theorem UInt8.val_eq_of_lt {a : } :
a < UInt8.size(UInt8.ofNat a).val = a
theorem UInt16.val_eq_of_lt {a : } :
a < UInt16.size(UInt16.ofNat a).val = a
theorem UInt32.val_eq_of_lt {a : } :
a < UInt32.size(UInt32.ofNat a).val = a
theorem UInt64.val_eq_of_lt {a : } :
a < UInt64.size(UInt64.ofNat a).val = a
theorem USize.val_eq_of_lt {a : } :
a < USize.size(USize.ofNat a).val = a
Equations
theorem USize.intCast_def (z : ) :
z = { val := z }
theorem UInt8.val_eq_of_eq {a : UInt8} {b : UInt8} :
a = ba.val = b.val
theorem USize.eq_of_val_eq {a : USize} {b : USize} :
a.val = b.vala = b
Equations
Equations
theorem UInt32.one_def :
1 = { val := 1 }
theorem USize.add_def (a : USize) (b : USize) :
a + b = { val := a.val + b.val }
theorem UInt64.neg_def (a : UInt64) :
-a = { val := -a.val }
theorem UInt16.intCast_def (z : ) :
z = { val := z }
Equations
Equations
theorem UInt32.pow_def (a : UInt32) (n : ) :
a ^ n = { val := a.val ^ n }
Equations
  • One or more equations did not get rendered due to their size.
Equations
theorem UInt64.natCast_def (n : ) :
n = { val := n }
theorem USize.zsmul_def (z : ) (a : USize) :
z a = { val := z a.val }
theorem UInt8.mul_def (a : UInt8) (b : UInt8) :
a * b = { val := a.val * b.val }
theorem USize.zero_def :
0 = { val := 0 }
Equations
Equations
Equations
  • One or more equations did not get rendered due to their size.
Equations
theorem UInt8.intCast_def (z : ) :
z = { val := z }
theorem USize.natCast_def (n : ) :
n = { val := n }
theorem USize.pow_def (a : USize) (n : ) :
a ^ n = { val := a.val ^ n }
theorem UInt16.neg_def (a : UInt16) :
-a = { val := -a.val }
theorem UInt16.one_def :
1 = { val := 1 }
theorem UInt32.sub_def (a : UInt32) (b : UInt32) :
a - b = { val := a.val - b.val }
theorem UInt64.intCast_def (z : ) :
z = { val := z }
@[simp]
theorem USize.mk_val_eq (a : USize) :
{ val := a.val } = a
Equations
theorem UInt8.one_def :
1 = { val := 1 }
theorem UInt8.eq_of_val_eq {a : UInt8} {b : UInt8} :
a.val = b.vala = b
@[simp]
theorem UInt32.mk_val_eq (a : UInt32) :
{ val := a.val } = a
Equations
  • One or more equations did not get rendered due to their size.
Equations
Equations
theorem UInt8.neg_def (a : UInt8) :
-a = { val := -a.val }
Equations
Equations
theorem UInt8.zsmul_def (z : ) (a : UInt8) :
z a = { val := z a.val }
Equations
theorem UInt32.intCast_def (z : ) :
z = { val := z }
theorem UInt8.pow_def (a : UInt8) (n : ) :
a ^ n = { val := a.val ^ n }
theorem UInt8.mod_def (a : UInt8) (b : UInt8) :
a % b = { val := a.val % b.val }
theorem UInt16.sub_def (a : UInt16) (b : UInt16) :
a - b = { val := a.val - b.val }
theorem UInt64.one_def :
1 = { val := 1 }
@[simp]
theorem UInt64.mk_val_eq (a : UInt64) :
{ val := a.val } = a
theorem USize.mul_def (a : USize) (b : USize) :
a * b = { val := a.val * b.val }
theorem UInt32.natCast_def (n : ) :
n = { val := n }
theorem USize.mod_def (a : USize) (b : USize) :
a % b = { val := a.val % b.val }
theorem UInt32.zsmul_def (z : ) (a : UInt32) :
z a = { val := z a.val }
Equations
theorem UInt16.add_def (a : UInt16) (b : UInt16) :
a + b = { val := a.val + b.val }
theorem UInt64.pow_def (a : UInt64) (n : ) :
a ^ n = { val := a.val ^ n }
theorem UInt16.mul_def (a : UInt16) (b : UInt16) :
a * b = { val := a.val * b.val }
theorem UInt8.nsmul_def (n : ) (a : UInt8) :
n a = { val := n a.val }
theorem UInt16.nsmul_def (n : ) (a : UInt16) :
n a = { val := n a.val }
Equations
theorem UInt64.mod_def (a : UInt64) (b : UInt64) :
a % b = { val := a.val % b.val }
Equations
theorem UInt64.zsmul_def (z : ) (a : UInt64) :
z a = { val := z a.val }
Equations
theorem UInt64.sub_def (a : UInt64) (b : UInt64) :
a - b = { val := a.val - b.val }
theorem UInt32.val_eq_of_eq {a : UInt32} {b : UInt32} :
a = ba.val = b.val
@[simp]
theorem UInt8.mk_val_eq (a : UInt8) :
{ val := a.val } = a
theorem UInt8.sub_def (a : UInt8) (b : UInt8) :
a - b = { val := a.val - b.val }
theorem USize.nsmul_def (n : ) (a : USize) :
n a = { val := n a.val }
@[simp]
theorem UInt16.mk_val_eq (a : UInt16) :
{ val := a.val } = a
Equations
  • One or more equations did not get rendered due to their size.
Equations
theorem USize.neg_def (a : USize) :
-a = { val := -a.val }
Equations
theorem UInt64.nsmul_def (n : ) (a : UInt64) :
n a = { val := n a.val }
theorem UInt16.val_eq_of_eq {a : UInt16} {b : UInt16} :
a = ba.val = b.val
theorem UInt32.add_def (a : UInt32) (b : UInt32) :
a + b = { val := a.val + b.val }
theorem UInt32.eq_of_val_eq {a : UInt32} {b : UInt32} :
a.val = b.vala = b
theorem UInt32.neg_def (a : UInt32) :
-a = { val := -a.val }
Equations
Equations
theorem USize.one_def :
1 = { val := 1 }
theorem UInt64.zero_def :
0 = { val := 0 }
theorem UInt16.zero_def :
0 = { val := 0 }
theorem UInt16.natCast_def (n : ) :
n = { val := n }
theorem UInt32.mod_def (a : UInt32) (b : UInt32) :
a % b = { val := a.val % b.val }
theorem UInt64.val_eq_of_eq {a : UInt64} {b : UInt64} :
a = ba.val = b.val
theorem UInt64.mul_def (a : UInt64) (b : UInt64) :
a * b = { val := a.val * b.val }
theorem UInt32.zero_def :
0 = { val := 0 }
theorem USize.val_eq_of_eq {a : USize} {b : USize} :
a = ba.val = b.val
theorem UInt16.mod_def (a : UInt16) (b : UInt16) :
a % b = { val := a.val % b.val }
theorem UInt8.natCast_def (n : ) :
n = { val := n }
theorem UInt64.eq_of_val_eq {a : UInt64} {b : UInt64} :
a.val = b.vala = b
Equations
Equations
Equations
Equations
theorem UInt32.mul_def (a : UInt32) (b : UInt32) :
a * b = { val := a.val * b.val }
Equations
theorem USize.sub_def (a : USize) (b : USize) :
a - b = { val := a.val - b.val }
theorem UInt8.zero_def :
0 = { val := 0 }
theorem UInt16.eq_of_val_eq {a : UInt16} {b : UInt16} :
a.val = b.vala = b
Equations
theorem UInt32.nsmul_def (n : ) (a : UInt32) :
n a = { val := n a.val }
Equations
  • One or more equations did not get rendered due to their size.
Equations
theorem UInt64.add_def (a : UInt64) (b : UInt64) :
a + b = { val := a.val + b.val }
theorem UInt16.zsmul_def (z : ) (a : UInt16) :
z a = { val := z a.val }
theorem UInt16.pow_def (a : UInt16) (n : ) :
a ^ n = { val := a.val ^ n }
theorem UInt8.add_def (a : UInt8) (b : UInt8) :
a + b = { val := a.val + b.val }

Is this an uppercase ASCII letter?

Equations
Instances For

    Is this a lowercase ASCII letter?

    Equations
    Instances For

      Is this an alphabetic ASCII character?

      Equations
      Instances For

        Is this an ASCII digit character?

        Equations
        Instances For

          Is this an alphanumeric ASCII character?

          Equations
          Instances For

            The numbers from 0 to 256 are all valid UTF-8 characters, so we can embed one in the other.

            Equations
            Instances For