Extra lemmas about ULift
and PLift
#
In this file we provide Subsingleton
, Unique
, DecidableEq
, and isEmpty
instances for
ULift α
and PLift α
. We also prove ULift.forall
, ULift.exists
, PLift.forall
, and
PLift.exists
.
Equations
- (_ : Subsingleton (PLift α)) = (_ : Subsingleton (PLift α))
Equations
- PLift.instUniquePLift = Equiv.unique Equiv.plift
Equations
- PLift.instDecidableEqPLift = Equiv.decidableEq Equiv.plift
@[simp]
@[simp]
@[simp]
Equations
- (_ : Subsingleton (ULift.{u_1, u} α)) = (_ : Subsingleton (ULift.{u_1, u} α))
Equations
- (_ : Nonempty (ULift.{u_1, u} α)) = (_ : Nonempty (ULift.{u_1, u} α))
Equations
- ULift.instUniqueULift = Equiv.unique Equiv.ulift
Equations
- ULift.instDecidableEqULift = Equiv.decidableEq Equiv.ulift
Equations
- (_ : IsEmpty (ULift.{u_1, u} α)) = (_ : IsEmpty (ULift.{u_1, u} α))
@[simp]
theorem
ULift.forall
{α : Type u}
{p : ULift.{u_1, u} α → Prop}
:
(∀ (x : ULift.{u_1, u} α), p x) ↔ ∀ (x : α), p { down := x }
@[simp]
theorem
ULift.exists
{α : Type u}
{p : ULift.{u_1, u} α → Prop}
:
(∃ (x : ULift.{u_1, u} α), p x) ↔ ∃ (x : α), p { down := x }
@[simp]
@[simp]
@[simp]
theorem
ULift.ext
{α : Type u}
(x : ULift.{u_1, u} α)
(y : ULift.{u_1, u} α)
(h : x.down = y.down)
:
x = y