Documentation

Mathlib.Data.ZMod.Quotient

ZMod n and quotient groups / rings #

This file relates ZMod n to the quotient group ℤ / AddSubgroup.zmultiples (n : ℤ) and to the quotient ring ℤ ⧸ Ideal.span {(n : ℤ)}.

Main definitions #

Tags #

zmod, quotient group, quotient ring, ideal quotient

modulo multiples of n : ℕ is ZMod n.

Equations
  • One or more equations did not get rendered due to their size.
Instances For

    modulo multiples of a : ℤ is ZMod a.nat_abs.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For

      modulo the ideal generated by n : ℕ is ZMod n.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For

        modulo the ideal generated by a : ℤ is ZMod a.nat_abs.

        Equations
        Instances For
          def ZMod.prodEquivPi {ι : Type u_3} [Fintype ι] (a : ι) (coprime : Pairwise fun (i j : ι) => Nat.Coprime (a i) (a j)) :
          ZMod (Finset.prod Finset.univ fun (i : ι) => a i) ≃+* ((i : ι) → ZMod (a i))

          The Chinese remainder theorem, elementary version for ZMod. See also Mathlib.Data.ZMod.Basic for versions involving only two numbers.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            noncomputable def AddAction.zmultiplesQuotientStabilizerEquiv {α : Type u_3} {β : Type u_4} [AddGroup α] (a : α) [AddAction α β] (b : β) :

            The quotient (ℤ ∙ a) ⧸ (stabilizer b) is cyclic of order minimalPeriod (a +ᵥ ·) b.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              theorem AddAction.zmultiplesQuotientStabilizerEquiv_symm_apply {α : Type u_3} {β : Type u_4} [AddGroup α] (a : α) [AddAction α β] (b : β) (n : ZMod (Function.minimalPeriod (fun (x : β) => a +ᵥ x) b)) :
              noncomputable def MulAction.zpowersQuotientStabilizerEquiv {α : Type u_3} {β : Type u_4} [Group α] (a : α) [MulAction α β] (b : β) :

              The quotient (a ^ ℤ) ⧸ (stabilizer b) is cyclic of order minimalPeriod ((•) a) b.

              Equations
              Instances For
                theorem MulAction.zpowersQuotientStabilizerEquiv_symm_apply {α : Type u_3} {β : Type u_4} [Group α] (a : α) [MulAction α β] (b : β) (n : ZMod (Function.minimalPeriod (fun (x : β) => a x) b)) :
                (MulEquiv.symm (MulAction.zpowersQuotientStabilizerEquiv a b)) n = { val := a, property := (_ : a Subgroup.zpowers a) } ^ ZMod.cast n
                noncomputable def MulAction.orbitZPowersEquiv {α : Type u_3} {β : Type u_4} [Group α] (a : α) [MulAction α β] (b : β) :
                (MulAction.orbit ((Subgroup.zpowers a)) b) ZMod (Function.minimalPeriod (fun (x : β) => a x) b)

                The orbit (a ^ ℤ) • b is a cycle of order minimalPeriod ((•) a) b.

                Equations
                Instances For
                  noncomputable def AddAction.orbitZMultiplesEquiv {α : Type u_5} {β : Type u_6} [AddGroup α] (a : α) [AddAction α β] (b : β) :
                  (AddAction.orbit ((AddSubgroup.zmultiples a)) b) ZMod (Function.minimalPeriod (fun (x : β) => a +ᵥ x) b)

                  The orbit (ℤ • a) +ᵥ b is a cycle of order minimalPeriod (a +ᵥ ·) b.

                  Equations
                  Instances For
                    theorem AddAction.orbit_zmultiples_equiv_symm_apply {α : Type u_3} {β : Type u_4} [AddGroup α] (a : α) [AddAction α β] (b : β) (k : ZMod (Function.minimalPeriod (fun (x : β) => a +ᵥ x) b)) :
                    (AddAction.orbitZMultiplesEquiv a b).symm k = ZMod.cast k { val := a, property := (_ : a AddSubgroup.zmultiples a) } +ᵥ { val := b, property := (_ : b AddAction.orbit ((AddSubgroup.zmultiples a)) b) }
                    theorem MulAction.orbitZPowersEquiv_symm_apply {α : Type u_3} {β : Type u_4} [Group α] (a : α) [MulAction α β] (b : β) (k : ZMod (Function.minimalPeriod (fun (x : β) => a x) b)) :
                    (MulAction.orbitZPowersEquiv a b).symm k = { val := a, property := (_ : a Subgroup.zpowers a) } ^ ZMod.cast k { val := b, property := (_ : b MulAction.orbit ((Subgroup.zpowers a)) b) }
                    theorem MulAction.orbitZPowersEquiv_symm_apply' {α : Type u_3} {β : Type u_4} [Group α] (a : α) [MulAction α β] (b : β) (k : ) :
                    (MulAction.orbitZPowersEquiv a b).symm k = { val := a, property := (_ : a Subgroup.zpowers a) } ^ k { val := b, property := (_ : b MulAction.orbit ((Subgroup.zpowers a)) b) }
                    theorem AddAction.orbitZMultiplesEquiv_symm_apply' {α : Type u_5} {β : Type u_6} [AddGroup α] (a : α) [AddAction α β] (b : β) (k : ) :
                    (AddAction.orbitZMultiplesEquiv a b).symm k = k { val := a, property := (_ : a AddSubgroup.zmultiples a) } +ᵥ { val := b, property := (_ : b AddAction.orbit ((AddSubgroup.zmultiples a)) b) }
                    theorem AddAction.minimalPeriod_eq_card {α : Type u_3} {β : Type u_4} [AddGroup α] (a : α) [AddAction α β] (b : β) [Fintype (AddAction.orbit ((AddSubgroup.zmultiples a)) b)] :
                    theorem MulAction.minimalPeriod_eq_card {α : Type u_3} {β : Type u_4} [Group α] (a : α) [MulAction α β] (b : β) [Fintype (MulAction.orbit ((Subgroup.zpowers a)) b)] :
                    instance AddAction.minimalPeriod_pos {α : Type u_3} {β : Type u_4} [AddGroup α] (a : α) [AddAction α β] (b : β) [Finite (AddAction.orbit ((AddSubgroup.zmultiples a)) b)] :
                    NeZero (Function.minimalPeriod (fun (x : β) => a +ᵥ x) b)
                    Equations
                    instance MulAction.minimalPeriod_pos {α : Type u_3} {β : Type u_4} [Group α] (a : α) [MulAction α β] (b : β) [Finite (MulAction.orbit ((Subgroup.zpowers a)) b)] :
                    NeZero (Function.minimalPeriod (fun (x : β) => a x) b)
                    Equations
                    @[simp]
                    theorem Nat.card_zpowers {α : Type u_3} [Group α] (a : α) :

                    See also Fintype.card_zpowers.

                    @[simp]
                    @[simp]
                    theorem finite_zpowers {α : Type u_3} [Group α] {a : α} :
                    @[simp]
                    theorem infinite_zpowers {α : Type u_3} [Group α] {a : α} :
                    theorem IsOfFinOrder.finite_zpowers {α : Type u_3} [Group α] {a : α} :

                    Alias of the reverse direction of finite_zpowers.