Documentation

Mathlib.FieldTheory.Laurent

Laurent expansions of rational functions #

Main declarations #

Implementation details #

Implemented as the quotient of two Taylor expansions, over domains. An auxiliary definition is provided first to make the construction of the AlgHom easier, which works on CommRing which are not necessarily domains.

def RatFunc.laurentAux {R : Type u} [CommRing R] [hdomain : IsDomain R] (r : R) :

The Laurent expansion of rational functions about a value. Auxiliary definition, usage when over integral domains should prefer RatFunc.laurent.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    theorem RatFunc.laurentAux_ofFractionRing_mk {R : Type u} [CommRing R] [hdomain : IsDomain R] (r : R) (p : Polynomial R) (q : (nonZeroDivisors (Polynomial R))) :
    (RatFunc.laurentAux r) { toFractionRing := Localization.mk p q } = { toFractionRing := Localization.mk ((Polynomial.taylor r) p) { val := (Polynomial.taylor r) q, property := (_ : (Polynomial.taylor r) q nonZeroDivisors (Polynomial R)) } }
    @[simp]
    theorem RatFunc.laurentAux_algebraMap {R : Type u} [CommRing R] [hdomain : IsDomain R] (r : R) (p : Polynomial R) :
    def RatFunc.laurent {R : Type u} [CommRing R] [hdomain : IsDomain R] (r : R) :

    The Laurent expansion of rational functions about a value.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[simp]
      theorem RatFunc.laurent_algebraMap {R : Type u} [CommRing R] [hdomain : IsDomain R] (r : R) (p : Polynomial R) :
      @[simp]
      theorem RatFunc.laurent_X {R : Type u} [CommRing R] [hdomain : IsDomain R] (r : R) :
      (RatFunc.laurent r) RatFunc.X = RatFunc.X + RatFunc.C r
      @[simp]
      theorem RatFunc.laurent_C {R : Type u} [CommRing R] [hdomain : IsDomain R] (r : R) (x : R) :
      (RatFunc.laurent r) (RatFunc.C x) = RatFunc.C x
      @[simp]
      theorem RatFunc.laurent_at_zero {R : Type u} [CommRing R] [hdomain : IsDomain R] (f : RatFunc R) :
      theorem RatFunc.laurent_laurent {R : Type u} [CommRing R] [hdomain : IsDomain R] (r : R) (s : R) (f : RatFunc R) :