Ringed spaces #
We introduce the category of ringed spaces, as an alias for SheafedSpace CommRingCat
.
The facts collected in this file are typically stated for locally ringed spaces, but never actually
make use of the locality of stalks. See for instance
@[inline, reducible]
The type of Ringed spaces, as an abbreviation for SheafedSpace CommRingCat
.
Instances For
Equations
- AlgebraicGeometry.RingedSpace.instCoeSortRingedSpaceType = { coe := fun (X : AlgebraicGeometry.RingedSpace) => ↑↑X.toPresheafedSpace }
theorem
AlgebraicGeometry.RingedSpace.isUnit_res_of_isUnit_germ
(X : AlgebraicGeometry.RingedSpace)
(U : TopologicalSpace.Opens ↑↑X.toPresheafedSpace)
(f : ↑(X.presheaf.toPrefunctor.obj (Opposite.op U)))
(x : ↥U)
(h : IsUnit ((TopCat.Presheaf.germ X.presheaf x) f))
:
∃ (V : TopologicalSpace.Opens ↑↑X.toPresheafedSpace) (i : V ⟶ U) (_ : ↑x ∈ V),
IsUnit ((X.presheaf.toPrefunctor.map i.op) f)
If the germ of a section f
is a unit in the stalk at x
, then f
must be a unit on some small
neighborhood around x
.
theorem
AlgebraicGeometry.RingedSpace.isUnit_of_isUnit_germ
(X : AlgebraicGeometry.RingedSpace)
(U : TopologicalSpace.Opens ↑↑X.toPresheafedSpace)
(f : ↑(X.presheaf.toPrefunctor.obj (Opposite.op U)))
(h : ∀ (x : ↥U), IsUnit ((TopCat.Presheaf.germ X.presheaf x) f))
:
IsUnit f
If a section f
is a unit in each stalk, f
must be a unit.
def
AlgebraicGeometry.RingedSpace.basicOpen
(X : AlgebraicGeometry.RingedSpace)
{U : TopologicalSpace.Opens ↑↑X.toPresheafedSpace}
(f : ↑(X.presheaf.toPrefunctor.obj (Opposite.op U)))
:
TopologicalSpace.Opens ↑↑X.toPresheafedSpace
The basic open of a section f
is the set of all points x
, such that the germ of f
at
x
is a unit.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
AlgebraicGeometry.RingedSpace.mem_basicOpen
(X : AlgebraicGeometry.RingedSpace)
{U : TopologicalSpace.Opens ↑↑X.toPresheafedSpace}
(f : ↑(X.presheaf.toPrefunctor.obj (Opposite.op U)))
(x : ↥U)
:
↑x ∈ AlgebraicGeometry.RingedSpace.basicOpen X f ↔ IsUnit ((TopCat.Presheaf.germ X.presheaf x) f)
@[simp]
theorem
AlgebraicGeometry.RingedSpace.mem_top_basicOpen
(X : AlgebraicGeometry.RingedSpace)
(f : ↑(X.presheaf.toPrefunctor.obj (Opposite.op ⊤)))
(x : ↑↑X.toPresheafedSpace)
:
x ∈ AlgebraicGeometry.RingedSpace.basicOpen X f ↔ IsUnit ((TopCat.Presheaf.germ X.presheaf { val := x, property := (_ : x ∈ ⊤) }) f)
theorem
AlgebraicGeometry.RingedSpace.basicOpen_le
(X : AlgebraicGeometry.RingedSpace)
{U : TopologicalSpace.Opens ↑↑X.toPresheafedSpace}
(f : ↑(X.presheaf.toPrefunctor.obj (Opposite.op U)))
:
theorem
AlgebraicGeometry.RingedSpace.isUnit_res_basicOpen
(X : AlgebraicGeometry.RingedSpace)
{U : TopologicalSpace.Opens ↑↑X.toPresheafedSpace}
(f : ↑(X.presheaf.toPrefunctor.obj (Opposite.op U)))
:
IsUnit
((X.presheaf.toPrefunctor.map (CategoryTheory.homOfLE (_ : AlgebraicGeometry.RingedSpace.basicOpen X f ≤ U)).op) f)
The restriction of a section f
to the basic open of f
is a unit.
@[simp]
theorem
AlgebraicGeometry.RingedSpace.basicOpen_res
(X : AlgebraicGeometry.RingedSpace)
{U : (TopologicalSpace.Opens ↑↑X.toPresheafedSpace)ᵒᵖ}
{V : (TopologicalSpace.Opens ↑↑X.toPresheafedSpace)ᵒᵖ}
(i : U ⟶ V)
(f : ↑(X.presheaf.toPrefunctor.obj U))
:
AlgebraicGeometry.RingedSpace.basicOpen X ((X.presheaf.toPrefunctor.map i) f) = V.unop ⊓ AlgebraicGeometry.RingedSpace.basicOpen X f
@[simp]
theorem
AlgebraicGeometry.RingedSpace.basicOpen_res_eq
(X : AlgebraicGeometry.RingedSpace)
{U : (TopologicalSpace.Opens ↑↑X.toPresheafedSpace)ᵒᵖ}
{V : (TopologicalSpace.Opens ↑↑X.toPresheafedSpace)ᵒᵖ}
(i : U ⟶ V)
[CategoryTheory.IsIso i]
(f : ↑(X.presheaf.toPrefunctor.obj U))
:
AlgebraicGeometry.RingedSpace.basicOpen X ((X.presheaf.toPrefunctor.map i) f) = AlgebraicGeometry.RingedSpace.basicOpen X f
@[simp]
theorem
AlgebraicGeometry.RingedSpace.basicOpen_mul
(X : AlgebraicGeometry.RingedSpace)
{U : TopologicalSpace.Opens ↑↑X.toPresheafedSpace}
(f : ↑(X.presheaf.toPrefunctor.obj (Opposite.op U)))
(g : ↑(X.presheaf.toPrefunctor.obj (Opposite.op U)))
:
theorem
AlgebraicGeometry.RingedSpace.basicOpen_of_isUnit
(X : AlgebraicGeometry.RingedSpace)
{U : TopologicalSpace.Opens ↑↑X.toPresheafedSpace}
{f : ↑(X.presheaf.toPrefunctor.obj (Opposite.op U))}
(hf : IsUnit f)
: