Commuting Probability #
This file introduces the commuting probability of finite groups.
Main definitions #
commProb
: The commuting probability of a finite type with a multiplication operation.
Todo #
- Neumann's theorem.
theorem
commProb_pi
{α : Type u_3}
(i : α → Type u_2)
[Fintype α]
[(a : α) → Mul (i a)]
:
commProb ((a : α) → i a) = Finset.prod Finset.univ fun (a : α) => commProb (i a)
theorem
inv_card_commutator_le_commProb
(G : Type u_2)
[Group G]
[Finite G]
:
(↑(Nat.card ↥(commutator G)))⁻¹ ≤ commProb G
A list of Dihedral groups whose product will have commuting probability 1 / n
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
DihedralGroup.reciprocalFactors_odd
{n : ℕ}
(h1 : n ≠ 1)
(h2 : Odd n)
:
DihedralGroup.reciprocalFactors n = n % 4 * n :: DihedralGroup.reciprocalFactors (n / 4 + 1)
@[inline, reducible]
A finite product of Dihedral groups.
Equations
- DihedralGroup.Product l = ((i : Fin (List.length l)) → DihedralGroup l[i])
Instances For
theorem
DihedralGroup.commProb_cons
(n : ℕ)
(l : List ℕ)
:
commProb (DihedralGroup.Product (n :: l)) = commProb (DihedralGroup n) * commProb (DihedralGroup.Product l)
Construction of a group with commuting probability 1 / n
.