Scalar actions on and by Mᵐᵒᵖ
#
This file defines the actions on the opposite type SMul R Mᵐᵒᵖ
, and actions by the opposite
type, SMul Rᵐᵒᵖ M
.
Note that MulOpposite.smul
is provided in an earlier file as it is needed to
provide the AddMonoid.nsmul
and AddCommGroup.zsmul
fields.
Notation #
With open scoped RightActions
, this provides:
r •> m
as an alias forr • m
m <• r
as an alias forMulOpposite.op r • m
v +ᵥ> p
as an alias forv +ᵥ p
p <+ᵥ v
as an alias forAddOpposite.op v +ᵥ p
Actions on the opposite type #
Actions on the opposite type just act on the underlying type.
Equations
- (_ : VAddAssocClass M N αᵃᵒᵖ) = (_ : VAddAssocClass M N αᵃᵒᵖ)
Equations
- (_ : IsScalarTower M N αᵐᵒᵖ) = (_ : IsScalarTower M N αᵐᵒᵖ)
Equations
- (_ : VAddCommClass M N αᵃᵒᵖ) = (_ : VAddCommClass M N αᵃᵒᵖ)
Equations
- (_ : SMulCommClass M N αᵐᵒᵖ) = (_ : SMulCommClass M N αᵐᵒᵖ)
Equations
- (_ : IsCentralVAdd R αᵃᵒᵖ) = (_ : IsCentralVAdd R αᵃᵒᵖ)
Equations
- (_ : IsCentralScalar R αᵐᵒᵖ) = (_ : IsCentralScalar R αᵐᵒᵖ)
Right actions #
In this section we establish SMul αᵐᵒᵖ β
as the canonical spelling of right scalar multiplication
of β
by α
, and provide convenient notations.
With open scoped RightActions
, an alternative symbol for left actions, r • m
.
In lemma names this is still called smul
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Pretty printer defined by notation3
command.
Equations
- One or more equations did not get rendered due to their size.
Instances For
With open scoped RightActions
, a shorthand for right actions, op r • m
.
In lemma names this is still called op_smul
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Pretty printer defined by notation3
command.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Pretty printer defined by notation3
command.
Equations
- One or more equations did not get rendered due to their size.
Instances For
With open scoped RightActions
, an alternative symbol for left actions, r • m
.
In lemma names this is still called vadd
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Pretty printer defined by notation3
command.
Equations
- One or more equations did not get rendered due to their size.
Instances For
With open scoped RightActions
, a shorthand for right actions, op r +ᵥ m
.
In lemma names this is still called op_vadd
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Actions by the opposite type (right actions) #
In Mul.toSMul
in another file, we define the left action a₁ • a₂ = a₁ * a₂
. For the
multiplicative opposite, we define MulOpposite.op a₁ • a₂ = a₂ * a₁
, with the multiplication
reversed.
Like Add.toVAdd
, but adds on the right.
See also AddMonoid.to_OppositeAddAction
.
Equations
- Add.toHasOppositeVAdd α = { vadd := fun (c : αᵃᵒᵖ) (x : α) => x + AddOpposite.unop c }
Like Mul.toSMul
, but multiplies on the right.
See also Monoid.toOppositeMulAction
and MonoidWithZero.toOppositeMulActionWithZero
.
Equations
- Mul.toHasOppositeSMul α = { smul := fun (c : αᵐᵒᵖ) (x : α) => x * MulOpposite.unop c }
The right regular action of an additive group on itself is transitive.
Equations
- (_ : AddAction.IsPretransitive Gᵃᵒᵖ G) = (_ : AddAction.IsPretransitive Gᵃᵒᵖ G)
The right regular action of a group on itself is transitive.
Equations
- (_ : MulAction.IsPretransitive Gᵐᵒᵖ G) = (_ : MulAction.IsPretransitive Gᵐᵒᵖ G)
Equations
- (_ : VAddCommClass αᵃᵒᵖ α α) = (_ : VAddCommClass αᵃᵒᵖ α α)
Equations
- (_ : SMulCommClass αᵐᵒᵖ α α) = (_ : SMulCommClass αᵐᵒᵖ α α)
Equations
- (_ : VAddCommClass α αᵃᵒᵖ α) = (_ : VAddCommClass α αᵃᵒᵖ α)
Equations
- (_ : SMulCommClass α αᵐᵒᵖ α) = (_ : SMulCommClass α αᵐᵒᵖ α)
Equations
- (_ : IsCentralVAdd α α) = (_ : IsCentralVAdd α α)
Equations
- (_ : IsCentralScalar α α) = (_ : IsCentralScalar α α)
Like AddMonoid.toAddAction
, but adds on the right.
Equations
- One or more equations did not get rendered due to their size.
Like Monoid.toMulAction
, but multiplies on the right.
Equations
- One or more equations did not get rendered due to their size.
Equations
- (_ : VAddAssocClass M Nᵃᵒᵖ N) = (_ : VAddAssocClass M Nᵃᵒᵖ N)
Equations
- (_ : IsScalarTower M Nᵐᵒᵖ N) = (_ : IsScalarTower M Nᵐᵒᵖ N)
Equations
- (_ : VAddCommClass M Nᵃᵒᵖ N) = (_ : VAddCommClass M Nᵃᵒᵖ N)
Equations
- (_ : SMulCommClass M Nᵐᵒᵖ N) = (_ : SMulCommClass M Nᵐᵒᵖ N)
AddMonoid.toOppositeAddAction
is faithful on cancellative monoids.
Equations
- (_ : FaithfulVAdd αᵃᵒᵖ α) = (_ : FaithfulVAdd αᵃᵒᵖ α)
Monoid.toOppositeMulAction
is faithful on cancellative monoids.
Equations
- (_ : FaithfulSMul αᵐᵒᵖ α) = (_ : FaithfulSMul αᵐᵒᵖ α)
Monoid.toOppositeMulAction
is faithful on nontrivial cancellative monoids with zero.
Equations
- (_ : FaithfulSMul αᵐᵒᵖ α) = (_ : FaithfulSMul αᵐᵒᵖ α)