Support of an element under an action action #
Given an action of a group G
on a type α
, we say that a set s : Set α
supports an element
a : α
if, for all g
that fix s
pointwise, g
fixes a
.
This is crucial in Fourier-Motzkin constructions.
theorem
AddAction.supports_of_mem
(G : Type u_1)
{α : Type u_3}
[VAdd G α]
{s : Set α}
{a : α}
(ha : a ∈ s)
:
AddAction.Supports G s a
theorem
MulAction.supports_of_mem
(G : Type u_1)
{α : Type u_3}
[SMul G α]
{s : Set α}
{a : α}
(ha : a ∈ s)
:
MulAction.Supports G s a
theorem
AddAction.Supports.mono
{G : Type u_1}
{α : Type u_3}
{β : Type u_4}
[VAdd G α]
[VAdd G β]
{s : Set α}
{t : Set α}
{b : β}
(h : s ⊆ t)
(hs : AddAction.Supports G s b)
:
AddAction.Supports G t b
theorem
MulAction.Supports.mono
{G : Type u_1}
{α : Type u_3}
{β : Type u_4}
[SMul G α]
[SMul G β]
{s : Set α}
{t : Set α}
{b : β}
(h : s ⊆ t)
(hs : MulAction.Supports G s b)
:
MulAction.Supports G t b
theorem
AddAction.Supports.vadd
{G : Type u_1}
{H : Type u_2}
{α : Type u_3}
{β : Type u_4}
[AddGroup H]
[VAdd G α]
[VAdd G β]
[AddAction H α]
[VAdd H β]
[VAddCommClass G H β]
[VAddCommClass G H α]
{s : Set α}
{b : β}
(g : H)
(h : AddAction.Supports G s b)
:
AddAction.Supports G (g +ᵥ s) (g +ᵥ b)
theorem
MulAction.Supports.smul
{G : Type u_1}
{H : Type u_2}
{α : Type u_3}
{β : Type u_4}
[Group H]
[SMul G α]
[SMul G β]
[MulAction H α]
[SMul H β]
[SMulCommClass G H β]
[SMulCommClass G H α]
{s : Set α}
{b : β}
(g : H)
(h : MulAction.Supports G s b)
:
MulAction.Supports G (g • s) (g • b)