Actions by Subgroup
s #
These are just copies of the definitions about Submonoid
starting from Submonoid.mulAction
.
Tags #
subgroup, subgroups
instance
AddSubgroup.instAddAction
{G : Type u_1}
{α : Type u_2}
[AddGroup G]
[AddAction G α]
{S : AddSubgroup G}
:
AddAction (↥S) α
The additive action by an add_subgroup is the action by the underlying AddGroup
.
Equations
- AddSubgroup.instAddAction = inferInstanceAs (AddAction (↥S.toAddSubmonoid) α)
theorem
AddSubgroup.vadd_def
{G : Type u_1}
{α : Type u_2}
[AddGroup G]
[AddAction G α]
{S : AddSubgroup G}
(g : ↥S)
(m : α)
:
instance
AddSubgroup.vaddCommClass_left
{G : Type u_1}
{α : Type u_2}
{β : Type u_3}
[AddGroup G]
[AddAction G β]
[VAdd α β]
[VAddCommClass G α β]
(S : AddSubgroup G)
:
VAddCommClass (↥S) α β
Equations
- (_ : VAddCommClass (↥S) α β) = (_ : VAddCommClass (↥S.toAddSubmonoid) α β)
instance
Subgroup.smulCommClass_left
{G : Type u_1}
{α : Type u_2}
{β : Type u_3}
[Group G]
[MulAction G β]
[SMul α β]
[SMulCommClass G α β]
(S : Subgroup G)
:
SMulCommClass (↥S) α β
Equations
- (_ : SMulCommClass (↥S) α β) = (_ : SMulCommClass (↥S.toSubmonoid) α β)
instance
AddSubgroup.vaddCommClass_right
{G : Type u_1}
{α : Type u_2}
{β : Type u_3}
[AddGroup G]
[VAdd α β]
[AddAction G β]
[VAddCommClass α G β]
(S : AddSubgroup G)
:
VAddCommClass α (↥S) β
Equations
- (_ : VAddCommClass α (↥S) β) = (_ : VAddCommClass α (↥S.toAddSubmonoid) β)
instance
Subgroup.smulCommClass_right
{G : Type u_1}
{α : Type u_2}
{β : Type u_3}
[Group G]
[SMul α β]
[MulAction G β]
[SMulCommClass α G β]
(S : Subgroup G)
:
SMulCommClass α (↥S) β
Equations
- (_ : SMulCommClass α (↥S) β) = (_ : SMulCommClass α (↥S.toSubmonoid) β)
instance
Subgroup.instIsScalarTowerSubtypeMemSubgroupInstMembershipInstSetLikeSubgroupSmulToMulOneClassToMonoidToDivInvMonoidToSMulToSubmonoidSmulToSMul
{G : Type u_1}
{α : Type u_2}
{β : Type u_3}
[Group G]
[SMul α β]
[MulAction G α]
[MulAction G β]
[IsScalarTower G α β]
(S : Subgroup G)
:
IsScalarTower (↥S) α β
Note that this provides IsScalarTower S G G
which is needed by smul_mul_assoc
.
Equations
- (_ : IsScalarTower (↥S) α β) = (_ : IsScalarTower (↥S.toSubmonoid) α β)
instance
Subgroup.instFaithfulSMulSubtypeMemSubgroupInstMembershipInstSetLikeSubgroupSmulToMulOneClassToMonoidToDivInvMonoidToSMulToSubmonoid
{G : Type u_1}
{α : Type u_2}
[Group G]
[MulAction G α]
[FaithfulSMul G α]
(S : Subgroup G)
:
FaithfulSMul (↥S) α
Equations
- (_ : FaithfulSMul (↥S) α) = (_ : FaithfulSMul (↥S.toSubmonoid) α)
instance
Subgroup.instDistribMulActionSubtypeMemSubgroupInstMembershipInstSetLikeSubgroupToMonoidToMonoidToDivInvMonoidToSubmonoid
{G : Type u_1}
{α : Type u_2}
[Group G]
[AddMonoid α]
[DistribMulAction G α]
(S : Subgroup G)
:
DistribMulAction (↥S) α
The action by a subgroup is the action by the underlying group.
instance
Subgroup.instMulDistribMulActionSubtypeMemSubgroupInstMembershipInstSetLikeSubgroupToMonoidToMonoidToDivInvMonoidToSubmonoid
{G : Type u_1}
{α : Type u_2}
[Group G]
[Monoid α]
[MulDistribMulAction G α]
(S : Subgroup G)
:
MulDistribMulAction (↥S) α
The action by a subgroup is the action by the underlying group.
instance
Subgroup.center.smulCommClass_left
{G : Type u_1}
[Group G]
:
SMulCommClass (↥(Subgroup.center G)) G G
The center of a group acts commutatively on that group.
Equations
- (_ : SMulCommClass (↥(Subgroup.center G)) G G) = (_ : SMulCommClass (↥(Submonoid.center G)) G G)
instance
Subgroup.center.smulCommClass_right
{G : Type u_1}
[Group G]
:
SMulCommClass G (↥(Subgroup.center G)) G
The center of a group acts commutatively on that group.
Equations
- (_ : SMulCommClass G (↥(Subgroup.center G)) G) = (_ : SMulCommClass G (↥(Submonoid.center G)) G)