Submonoid of opposite monoids #
For every monoid M
, we construct an equivalence between submonoids of M
and that of Mᵐᵒᵖ
.
theorem
AddSubmonoid.op.proof_1
{M : Type u_1}
[AddZeroClass M]
(x : AddSubmonoid M)
:
∀ {a b : Mᵃᵒᵖ}, a ∈ AddOpposite.unop ⁻¹' ↑x → b ∈ AddOpposite.unop ⁻¹' ↑x → AddOpposite.unop b + AddOpposite.unop a ∈ x
Pull an additive submonoid back to an opposite submonoid along
AddOpposite.unop
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
AddSubmonoid.op_coe
{M : Type u_2}
[AddZeroClass M]
(x : AddSubmonoid M)
:
↑(AddSubmonoid.op x) = AddOpposite.unop ⁻¹' ↑x
@[simp]
theorem
Submonoid.op_coe
{M : Type u_2}
[MulOneClass M]
(x : Submonoid M)
:
↑(Submonoid.op x) = MulOpposite.unop ⁻¹' ↑x
Pull a submonoid back to an opposite submonoid along MulOpposite.unop
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
AddSubmonoid.mem_op
{M : Type u_2}
[AddZeroClass M]
{x : Mᵃᵒᵖ}
{S : AddSubmonoid M}
:
x ∈ AddSubmonoid.op S ↔ AddOpposite.unop x ∈ S
@[simp]
theorem
Submonoid.mem_op
{M : Type u_2}
[MulOneClass M]
{x : Mᵐᵒᵖ}
{S : Submonoid M}
:
x ∈ Submonoid.op S ↔ MulOpposite.unop x ∈ S
Pull an opposite additive submonoid back to a submonoid along
AddOpposite.op
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
AddSubmonoid.unop.proof_2
{M : Type u_1}
[AddZeroClass M]
(x : AddSubmonoid Mᵃᵒᵖ)
:
0 ∈ x.carrier
@[simp]
theorem
AddSubmonoid.unop_coe
{M : Type u_2}
[AddZeroClass M]
(x : AddSubmonoid Mᵃᵒᵖ)
:
↑(AddSubmonoid.unop x) = AddOpposite.op ⁻¹' ↑x
@[simp]
theorem
Submonoid.unop_coe
{M : Type u_2}
[MulOneClass M]
(x : Submonoid Mᵐᵒᵖ)
:
↑(Submonoid.unop x) = MulOpposite.op ⁻¹' ↑x
Pull an opposite submonoid back to a submonoid along MulOpposite.op
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
AddSubmonoid.mem_unop
{M : Type u_2}
[AddZeroClass M]
{x : M}
{S : AddSubmonoid Mᵃᵒᵖ}
:
x ∈ AddSubmonoid.unop S ↔ AddOpposite.op x ∈ S
@[simp]
theorem
Submonoid.mem_unop
{M : Type u_2}
[MulOneClass M]
{x : M}
{S : Submonoid Mᵐᵒᵖ}
:
x ∈ Submonoid.unop S ↔ MulOpposite.op x ∈ S
@[simp]
@[simp]
theorem
Submonoid.unop_op
{M : Type u_2}
[MulOneClass M]
(S : Submonoid M)
:
Submonoid.unop (Submonoid.op S) = S
@[simp]
@[simp]
theorem
Submonoid.op_unop
{M : Type u_2}
[MulOneClass M]
(S : Submonoid Mᵐᵒᵖ)
:
Submonoid.op (Submonoid.unop S) = S
Lattice results #
theorem
AddSubmonoid.op_le_iff
{M : Type u_2}
[AddZeroClass M]
{S₁ : AddSubmonoid M}
{S₂ : AddSubmonoid Mᵃᵒᵖ}
:
AddSubmonoid.op S₁ ≤ S₂ ↔ S₁ ≤ AddSubmonoid.unop S₂
theorem
Submonoid.op_le_iff
{M : Type u_2}
[MulOneClass M]
{S₁ : Submonoid M}
{S₂ : Submonoid Mᵐᵒᵖ}
:
Submonoid.op S₁ ≤ S₂ ↔ S₁ ≤ Submonoid.unop S₂
theorem
AddSubmonoid.le_op_iff
{M : Type u_2}
[AddZeroClass M]
{S₁ : AddSubmonoid Mᵃᵒᵖ}
{S₂ : AddSubmonoid M}
:
S₁ ≤ AddSubmonoid.op S₂ ↔ AddSubmonoid.unop S₁ ≤ S₂
theorem
Submonoid.le_op_iff
{M : Type u_2}
[MulOneClass M]
{S₁ : Submonoid Mᵐᵒᵖ}
{S₂ : Submonoid M}
:
S₁ ≤ Submonoid.op S₂ ↔ Submonoid.unop S₁ ≤ S₂
@[simp]
theorem
AddSubmonoid.op_le_op_iff
{M : Type u_2}
[AddZeroClass M]
{S₁ : AddSubmonoid M}
{S₂ : AddSubmonoid M}
:
AddSubmonoid.op S₁ ≤ AddSubmonoid.op S₂ ↔ S₁ ≤ S₂
@[simp]
theorem
Submonoid.op_le_op_iff
{M : Type u_2}
[MulOneClass M]
{S₁ : Submonoid M}
{S₂ : Submonoid M}
:
Submonoid.op S₁ ≤ Submonoid.op S₂ ↔ S₁ ≤ S₂
@[simp]
theorem
AddSubmonoid.unop_le_unop_iff
{M : Type u_2}
[AddZeroClass M]
{S₁ : AddSubmonoid Mᵃᵒᵖ}
{S₂ : AddSubmonoid Mᵃᵒᵖ}
:
AddSubmonoid.unop S₁ ≤ AddSubmonoid.unop S₂ ↔ S₁ ≤ S₂
@[simp]
theorem
Submonoid.unop_le_unop_iff
{M : Type u_2}
[MulOneClass M]
{S₁ : Submonoid Mᵐᵒᵖ}
{S₂ : Submonoid Mᵐᵒᵖ}
:
Submonoid.unop S₁ ≤ Submonoid.unop S₂ ↔ S₁ ≤ S₂
A additive submonoid H
of G
determines an additive submonoid
H.op
of the opposite group Gᵐᵒᵖ
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
Submonoid.opEquiv_symm_apply
{M : Type u_2}
[MulOneClass M]
(x : Submonoid Mᵐᵒᵖ)
:
(RelIso.symm Submonoid.opEquiv) x = Submonoid.unop x
@[simp]
theorem
AddSubmonoid.opEquiv_symm_apply
{M : Type u_2}
[AddZeroClass M]
(x : AddSubmonoid Mᵃᵒᵖ)
:
(RelIso.symm AddSubmonoid.opEquiv) x = AddSubmonoid.unop x
@[simp]
theorem
AddSubmonoid.opEquiv_apply
{M : Type u_2}
[AddZeroClass M]
(x : AddSubmonoid M)
:
AddSubmonoid.opEquiv x = AddSubmonoid.op x
@[simp]
theorem
Submonoid.opEquiv_apply
{M : Type u_2}
[MulOneClass M]
(x : Submonoid M)
:
Submonoid.opEquiv x = Submonoid.op x
A submonoid H
of G
determines a submonoid H.op
of the opposite group Gᵐᵒᵖ
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
@[simp]
theorem
AddSubmonoid.op_sup
{M : Type u_2}
[AddZeroClass M]
(S₁ : AddSubmonoid M)
(S₂ : AddSubmonoid M)
:
AddSubmonoid.op (S₁ ⊔ S₂) = AddSubmonoid.op S₁ ⊔ AddSubmonoid.op S₂
theorem
Submonoid.op_sup
{M : Type u_2}
[MulOneClass M]
(S₁ : Submonoid M)
(S₂ : Submonoid M)
:
Submonoid.op (S₁ ⊔ S₂) = Submonoid.op S₁ ⊔ Submonoid.op S₂
theorem
AddSubmonoid.unop_sup
{M : Type u_2}
[AddZeroClass M]
(S₁ : AddSubmonoid Mᵃᵒᵖ)
(S₂ : AddSubmonoid Mᵃᵒᵖ)
:
AddSubmonoid.unop (S₁ ⊔ S₂) = AddSubmonoid.unop S₁ ⊔ AddSubmonoid.unop S₂
theorem
Submonoid.unop_sup
{M : Type u_2}
[MulOneClass M]
(S₁ : Submonoid Mᵐᵒᵖ)
(S₂ : Submonoid Mᵐᵒᵖ)
:
Submonoid.unop (S₁ ⊔ S₂) = Submonoid.unop S₁ ⊔ Submonoid.unop S₂
theorem
AddSubmonoid.op_inf
{M : Type u_2}
[AddZeroClass M]
(S₁ : AddSubmonoid M)
(S₂ : AddSubmonoid M)
:
AddSubmonoid.op (S₁ ⊓ S₂) = AddSubmonoid.op S₁ ⊓ AddSubmonoid.op S₂
theorem
Submonoid.op_inf
{M : Type u_2}
[MulOneClass M]
(S₁ : Submonoid M)
(S₂ : Submonoid M)
:
Submonoid.op (S₁ ⊓ S₂) = Submonoid.op S₁ ⊓ Submonoid.op S₂
theorem
AddSubmonoid.unop_inf
{M : Type u_2}
[AddZeroClass M]
(S₁ : AddSubmonoid Mᵃᵒᵖ)
(S₂ : AddSubmonoid Mᵃᵒᵖ)
:
AddSubmonoid.unop (S₁ ⊓ S₂) = AddSubmonoid.unop S₁ ⊓ AddSubmonoid.unop S₂
theorem
Submonoid.unop_inf
{M : Type u_2}
[MulOneClass M]
(S₁ : Submonoid Mᵐᵒᵖ)
(S₂ : Submonoid Mᵐᵒᵖ)
:
Submonoid.unop (S₁ ⊓ S₂) = Submonoid.unop S₁ ⊓ Submonoid.unop S₂
theorem
AddSubmonoid.op_sSup
{M : Type u_2}
[AddZeroClass M]
(S : Set (AddSubmonoid M))
:
AddSubmonoid.op (sSup S) = sSup (AddSubmonoid.unop ⁻¹' S)
theorem
Submonoid.op_sSup
{M : Type u_2}
[MulOneClass M]
(S : Set (Submonoid M))
:
Submonoid.op (sSup S) = sSup (Submonoid.unop ⁻¹' S)
theorem
AddSubmonoid.unop_sSup
{M : Type u_2}
[AddZeroClass M]
(S : Set (AddSubmonoid Mᵃᵒᵖ))
:
AddSubmonoid.unop (sSup S) = sSup (AddSubmonoid.op ⁻¹' S)
theorem
Submonoid.unop_sSup
{M : Type u_2}
[MulOneClass M]
(S : Set (Submonoid Mᵐᵒᵖ))
:
Submonoid.unop (sSup S) = sSup (Submonoid.op ⁻¹' S)
theorem
AddSubmonoid.op_sInf
{M : Type u_2}
[AddZeroClass M]
(S : Set (AddSubmonoid M))
:
AddSubmonoid.op (sInf S) = sInf (AddSubmonoid.unop ⁻¹' S)
theorem
Submonoid.op_sInf
{M : Type u_2}
[MulOneClass M]
(S : Set (Submonoid M))
:
Submonoid.op (sInf S) = sInf (Submonoid.unop ⁻¹' S)
theorem
AddSubmonoid.unop_sInf
{M : Type u_2}
[AddZeroClass M]
(S : Set (AddSubmonoid Mᵃᵒᵖ))
:
AddSubmonoid.unop (sInf S) = sInf (AddSubmonoid.op ⁻¹' S)
theorem
Submonoid.unop_sInf
{M : Type u_2}
[MulOneClass M]
(S : Set (Submonoid Mᵐᵒᵖ))
:
Submonoid.unop (sInf S) = sInf (Submonoid.op ⁻¹' S)
theorem
AddSubmonoid.op_iSup
{ι : Sort u_1}
{M : Type u_2}
[AddZeroClass M]
(S : ι → AddSubmonoid M)
:
AddSubmonoid.op (iSup S) = ⨆ (i : ι), AddSubmonoid.op (S i)
theorem
Submonoid.op_iSup
{ι : Sort u_1}
{M : Type u_2}
[MulOneClass M]
(S : ι → Submonoid M)
:
Submonoid.op (iSup S) = ⨆ (i : ι), Submonoid.op (S i)
theorem
AddSubmonoid.unop_iSup
{ι : Sort u_1}
{M : Type u_2}
[AddZeroClass M]
(S : ι → AddSubmonoid Mᵃᵒᵖ)
:
AddSubmonoid.unop (iSup S) = ⨆ (i : ι), AddSubmonoid.unop (S i)
theorem
Submonoid.unop_iSup
{ι : Sort u_1}
{M : Type u_2}
[MulOneClass M]
(S : ι → Submonoid Mᵐᵒᵖ)
:
Submonoid.unop (iSup S) = ⨆ (i : ι), Submonoid.unop (S i)
theorem
AddSubmonoid.op_iInf
{ι : Sort u_1}
{M : Type u_2}
[AddZeroClass M]
(S : ι → AddSubmonoid M)
:
AddSubmonoid.op (iInf S) = ⨅ (i : ι), AddSubmonoid.op (S i)
theorem
Submonoid.op_iInf
{ι : Sort u_1}
{M : Type u_2}
[MulOneClass M]
(S : ι → Submonoid M)
:
Submonoid.op (iInf S) = ⨅ (i : ι), Submonoid.op (S i)
theorem
AddSubmonoid.unop_iInf
{ι : Sort u_1}
{M : Type u_2}
[AddZeroClass M]
(S : ι → AddSubmonoid Mᵃᵒᵖ)
:
AddSubmonoid.unop (iInf S) = ⨅ (i : ι), AddSubmonoid.unop (S i)
theorem
Submonoid.unop_iInf
{ι : Sort u_1}
{M : Type u_2}
[MulOneClass M]
(S : ι → Submonoid Mᵐᵒᵖ)
:
Submonoid.unop (iInf S) = ⨅ (i : ι), Submonoid.unop (S i)
theorem
AddSubmonoid.op_closure
{M : Type u_2}
[AddZeroClass M]
(s : Set M)
:
AddSubmonoid.op (AddSubmonoid.closure s) = AddSubmonoid.closure (AddOpposite.unop ⁻¹' s)
theorem
Submonoid.op_closure
{M : Type u_2}
[MulOneClass M]
(s : Set M)
:
Submonoid.op (Submonoid.closure s) = Submonoid.closure (MulOpposite.unop ⁻¹' s)
theorem
AddSubmonoid.unop_closure
{M : Type u_2}
[AddZeroClass M]
(s : Set Mᵃᵒᵖ)
:
AddSubmonoid.unop (AddSubmonoid.closure s) = AddSubmonoid.closure (AddOpposite.op ⁻¹' s)
theorem
Submonoid.unop_closure
{M : Type u_2}
[MulOneClass M]
(s : Set Mᵐᵒᵖ)
:
Submonoid.unop (Submonoid.closure s) = Submonoid.closure (MulOpposite.op ⁻¹' s)
def
AddSubmonoid.equivOp
{M : Type u_2}
[AddZeroClass M]
(H : AddSubmonoid M)
:
↥H ≃ ↥(AddSubmonoid.op H)
Bijection between an additive submonoid H
and its opposite.
Equations
- AddSubmonoid.equivOp H = Equiv.subtypeEquiv AddOpposite.opEquiv (_ : ∀ (x : M), x ∈ H ↔ x ∈ H)
Instances For
@[simp]
theorem
AddSubmonoid.equivOp_symm_apply_coe
{M : Type u_2}
[AddZeroClass M]
(H : AddSubmonoid M)
(b : { b : Mᵃᵒᵖ // (fun (x : Mᵃᵒᵖ) => x ∈ AddSubmonoid.op H) b })
:
↑((AddSubmonoid.equivOp H).symm b) = AddOpposite.unop ↑b
@[simp]
theorem
Submonoid.equivOp_symm_apply_coe
{M : Type u_2}
[MulOneClass M]
(H : Submonoid M)
(b : { b : Mᵐᵒᵖ // (fun (x : Mᵐᵒᵖ) => x ∈ Submonoid.op H) b })
:
↑((Submonoid.equivOp H).symm b) = MulOpposite.unop ↑b
@[simp]
theorem
Submonoid.equivOp_apply_coe
{M : Type u_2}
[MulOneClass M]
(H : Submonoid M)
(a : { a : M // (fun (x : M) => x ∈ H) a })
:
↑((Submonoid.equivOp H) a) = MulOpposite.op ↑a
@[simp]
theorem
AddSubmonoid.equivOp_apply_coe
{M : Type u_2}
[AddZeroClass M]
(H : AddSubmonoid M)
(a : { a : M // (fun (x : M) => x ∈ H) a })
:
↑((AddSubmonoid.equivOp H) a) = AddOpposite.op ↑a
Bijection between a submonoid H
and its opposite.
Equations
- Submonoid.equivOp H = Equiv.subtypeEquiv MulOpposite.opEquiv (_ : ∀ (x : M), x ∈ H ↔ x ∈ H)