Documentation

Mathlib.GroupTheory.Transfer

The Transfer Homomorphism #

In this file we construct the transfer homomorphism.

Main definitions #

Main results #

noncomputable def AddSubgroup.leftTransversals.diff {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {A : Type u_2} [AddCommGroup A] (ϕ : H →+ A) (S : (AddSubgroup.leftTransversals H)) (T : (AddSubgroup.leftTransversals H)) [AddSubgroup.FiniteIndex H] :
A

The difference of two left transversals

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    noncomputable def Subgroup.leftTransversals.diff {G : Type u_1} [Group G] {H : Subgroup G} {A : Type u_2} [CommGroup A] (ϕ : H →* A) (S : (Subgroup.leftTransversals H)) (T : (Subgroup.leftTransversals H)) [Subgroup.FiniteIndex H] :
    A

    The difference of two left transversals

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      noncomputable def AddMonoidHom.transfer {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {A : Type u_2} [AddCommGroup A] (ϕ : H →+ A) [AddSubgroup.FiniteIndex H] :
      G →+ A

      Given ϕ : H →+ A from H : AddSubgroup G to an additive commutative group A, the transfer homomorphism is transfer ϕ : G →+ A.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        theorem AddMonoidHom.transfer.proof_2 {G : Type u_2} [AddGroup G] {H : AddSubgroup G} {A : Type u_1} [AddCommGroup A] (ϕ : H →+ A) [AddSubgroup.FiniteIndex H] (g : G) (h : G) :
        { toFun := fun (g : G) => AddSubgroup.leftTransversals.diff ϕ default (g +ᵥ default), map_zero' := (_ : (fun (g : G) => AddSubgroup.leftTransversals.diff ϕ default (g +ᵥ default)) 0 = 0) }.toFun (g + h) = { toFun := fun (g : G) => AddSubgroup.leftTransversals.diff ϕ default (g +ᵥ default), map_zero' := (_ : (fun (g : G) => AddSubgroup.leftTransversals.diff ϕ default (g +ᵥ default)) 0 = 0) }.toFun g + { toFun := fun (g : G) => AddSubgroup.leftTransversals.diff ϕ default (g +ᵥ default), map_zero' := (_ : (fun (g : G) => AddSubgroup.leftTransversals.diff ϕ default (g +ᵥ default)) 0 = 0) }.toFun h
        theorem AddMonoidHom.transfer.proof_1 {G : Type u_2} [AddGroup G] {H : AddSubgroup G} {A : Type u_1} [AddCommGroup A] (ϕ : H →+ A) [AddSubgroup.FiniteIndex H] :
        (fun (g : G) => AddSubgroup.leftTransversals.diff ϕ default (g +ᵥ default)) 0 = 0
        noncomputable def MonoidHom.transfer {G : Type u_1} [Group G] {H : Subgroup G} {A : Type u_2} [CommGroup A] (ϕ : H →* A) [Subgroup.FiniteIndex H] :
        G →* A

        Given ϕ : H →* A from H : Subgroup G to a commutative group A, the transfer homomorphism is transfer ϕ : G →* A.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          theorem MonoidHom.transfer_def {G : Type u_1} [Group G] {H : Subgroup G} {A : Type u_2} [CommGroup A] (ϕ : H →* A) (T : (Subgroup.leftTransversals H)) [Subgroup.FiniteIndex H] (g : G) :
          theorem MonoidHom.transfer_eq_prod_quotient_orbitRel_zpowers_quot {G : Type u_1} [Group G] {H : Subgroup G} {A : Type u_2} [CommGroup A] (ϕ : H →* A) [Subgroup.FiniteIndex H] (g : G) [Fintype (Quotient (MulAction.orbitRel ((Subgroup.zpowers g)) (G H)))] :
          (MonoidHom.transfer ϕ) g = Finset.prod Finset.univ fun (q : Quotient (MulAction.orbitRel ((Subgroup.zpowers g)) (G H))) => ϕ { val := (Quotient.out' (Quotient.out' q))⁻¹ * g ^ Function.minimalPeriod (fun (x : G H) => g x) (Quotient.out' q) * Quotient.out' (Quotient.out' q), property := (_ : (Quotient.out' (Quotient.out' q))⁻¹ * g ^ Function.minimalPeriod (fun (x : G H) => g x) (Quotient.out' q) * Quotient.out' (Quotient.out' q) H) }

          Explicit computation of the transfer homomorphism.

          theorem MonoidHom.transfer_eq_pow_aux {G : Type u_1} [Group G] {H : Subgroup G} (g : G) (key : ∀ (k : ) (g₀ : G), g₀⁻¹ * g ^ k * g₀ Hg₀⁻¹ * g ^ k * g₀ = g ^ k) :

          Auxiliary lemma in order to state transfer_eq_pow.

          theorem MonoidHom.transfer_eq_pow {G : Type u_1} [Group G] {H : Subgroup G} {A : Type u_2} [CommGroup A] (ϕ : H →* A) [Subgroup.FiniteIndex H] (g : G) (key : ∀ (k : ) (g₀ : G), g₀⁻¹ * g ^ k * g₀ Hg₀⁻¹ * g ^ k * g₀ = g ^ k) :
          (MonoidHom.transfer ϕ) g = ϕ { val := g ^ Subgroup.index H, property := (_ : g ^ Subgroup.index H H) }

          The transfer homomorphism G →* center G.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            noncomputable def MonoidHom.transferSylow {G : Type u_1} [Group G] {p : } (P : Sylow p G) (hP : Subgroup.normalizer P Subgroup.centralizer P) [Subgroup.FiniteIndex P] :
            G →* P

            The homomorphism G →* P in Burnside's transfer theorem.

            Equations
            Instances For
              theorem MonoidHom.transferSylow_eq_pow_aux {G : Type u_1} [Group G] {p : } (P : Sylow p G) (hP : Subgroup.normalizer P Subgroup.centralizer P) [Fact (Nat.Prime p)] [Finite (Sylow p G)] (g : G) (hg : g P) (k : ) (g₀ : G) (h : g₀⁻¹ * g ^ k * g₀ P) :
              g₀⁻¹ * g ^ k * g₀ = g ^ k

              Auxiliary lemma in order to state transferSylow_eq_pow.

              theorem MonoidHom.transferSylow_eq_pow {G : Type u_1} [Group G] {p : } (P : Sylow p G) (hP : Subgroup.normalizer P Subgroup.centralizer P) [Fact (Nat.Prime p)] [Finite (Sylow p G)] [Subgroup.FiniteIndex P] (g : G) (hg : g P) :
              (MonoidHom.transferSylow P hP) g = { val := g ^ Subgroup.index P, property := (_ : g ^ Subgroup.index P P) }

              Burnside's normal p-complement theorem: If N(P) ≤ C(P), then P has a normal complement.