Finite and free modules #
We provide some instances for finite and free modules.
Main results #
Module.Free.ChooseBasisIndex.fintype
: If a free module is finite, then any basis is finite.Module.Finite.of_basis
: A free module with a basis indexed by aFintype
is finite.
noncomputable instance
Module.Free.ChooseBasisIndex.fintype
(R : Type u)
(M : Type v)
[Ring R]
[AddCommGroup M]
[Module R M]
[Module.Free R M]
[Module.Finite R M]
:
If a free module is finite, then the arbitrary basis is finite.
Equations
theorem
Module.Finite.of_basis
{R : Type u_1}
{M : Type u_2}
{ι : Type u_3}
[Semiring R]
[AddCommMonoid M]
[Module R M]
[Finite ι]
(b : Basis ι R M)
:
Module.Finite R M
A free module with a basis indexed by a Fintype
is finite.
instance
Module.Finite.matrix
{R : Type u}
[CommRing R]
{ι₁ : Type u_1}
{ι₂ : Type u_2}
[Finite ι₁]
[Finite ι₂]
:
Module.Finite R (Matrix ι₁ ι₂ R)
Equations
- (_ : Module.Finite R (Matrix ι₁ ι₂ R)) = (_ : Module.Finite R (Matrix ι₁ ι₂ R))