Documentation

Mathlib.LinearAlgebra.QuadraticForm.IsometryEquiv

Isometric equivalences with respect to quadratic forms #

Main definitions #

Main results #

structure QuadraticForm.IsometryEquiv {R : Type u_2} {M₁ : Type u_5} {M₂ : Type u_6} [CommSemiring R] [AddCommMonoid M₁] [AddCommMonoid M₂] [Module R M₁] [Module R M₂] (Q₁ : QuadraticForm R M₁) (Q₂ : QuadraticForm R M₂) extends LinearEquiv :
Type (max u_5 u_6)

An isometric equivalence between two quadratic spaces M₁, Q₁ and M₂, Q₂ over a ring R, is a linear equivalence between M₁ and M₂ that commutes with the quadratic forms.

  • toFun : M₁M₂
  • map_add' : ∀ (x y : M₁), self.toAddHom.toFun (x + y) = self.toAddHom.toFun x + self.toAddHom.toFun y
  • map_smul' : ∀ (r : R) (x : M₁), self.toAddHom.toFun (r x) = (RingHom.id R) r self.toAddHom.toFun x
  • invFun : M₂M₁
  • left_inv : Function.LeftInverse self.invFun self.toFun
  • right_inv : Function.RightInverse self.invFun self.toFun
  • map_app' : ∀ (m : M₁), Q₂ (self.toAddHom.toFun m) = Q₁ m
Instances For
    def QuadraticForm.Equivalent {R : Type u_2} {M₁ : Type u_5} {M₂ : Type u_6} [CommSemiring R] [AddCommMonoid M₁] [AddCommMonoid M₂] [Module R M₁] [Module R M₂] (Q₁ : QuadraticForm R M₁) (Q₂ : QuadraticForm R M₂) :

    Two quadratic forms over a ring R are equivalent if there exists an isometric equivalence between them: a linear equivalence that transforms one quadratic form into the other.

    Equations
    Instances For
      instance QuadraticForm.IsometryEquiv.instEquivLikeIsometryEquiv {R : Type u_2} {M₁ : Type u_5} {M₂ : Type u_6} [CommSemiring R] [AddCommMonoid M₁] [AddCommMonoid M₂] [Module R M₁] [Module R M₂] {Q₁ : QuadraticForm R M₁} {Q₂ : QuadraticForm R M₂} :
      Equations
      • One or more equations did not get rendered due to their size.
      Equations
      instance QuadraticForm.IsometryEquiv.instCoeOutIsometryEquivLinearEquivToSemiringIdToNonAssocSemiringIds {R : Type u_2} {M₁ : Type u_5} {M₂ : Type u_6} [CommSemiring R] [AddCommMonoid M₁] [AddCommMonoid M₂] [Module R M₁] [Module R M₂] {Q₁ : QuadraticForm R M₁} {Q₂ : QuadraticForm R M₂} :
      Equations
      • QuadraticForm.IsometryEquiv.instCoeOutIsometryEquivLinearEquivToSemiringIdToNonAssocSemiringIds = { coe := QuadraticForm.IsometryEquiv.toLinearEquiv }
      @[simp]
      theorem QuadraticForm.IsometryEquiv.coe_toLinearEquiv {R : Type u_2} {M₁ : Type u_5} {M₂ : Type u_6} [CommSemiring R] [AddCommMonoid M₁] [AddCommMonoid M₂] [Module R M₁] [Module R M₂] {Q₁ : QuadraticForm R M₁} {Q₂ : QuadraticForm R M₂} (f : QuadraticForm.IsometryEquiv Q₁ Q₂) :
      f.toLinearEquiv = f
      @[simp]
      theorem QuadraticForm.IsometryEquiv.map_app {R : Type u_2} {M₁ : Type u_5} {M₂ : Type u_6} [CommSemiring R] [AddCommMonoid M₁] [AddCommMonoid M₂] [Module R M₁] [Module R M₂] {Q₁ : QuadraticForm R M₁} {Q₂ : QuadraticForm R M₂} (f : QuadraticForm.IsometryEquiv Q₁ Q₂) (m : M₁) :
      Q₂ (f m) = Q₁ m

      The identity isometric equivalence between a quadratic form and itself.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        def QuadraticForm.IsometryEquiv.symm {R : Type u_2} {M₁ : Type u_5} {M₂ : Type u_6} [CommSemiring R] [AddCommMonoid M₁] [AddCommMonoid M₂] [Module R M₁] [Module R M₂] {Q₁ : QuadraticForm R M₁} {Q₂ : QuadraticForm R M₂} (f : QuadraticForm.IsometryEquiv Q₁ Q₂) :

        The inverse isometric equivalence of an isometric equivalence between two quadratic forms.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          def QuadraticForm.IsometryEquiv.trans {R : Type u_2} {M₁ : Type u_5} {M₂ : Type u_6} {M₃ : Type u_7} [CommSemiring R] [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid M₃] [Module R M₁] [Module R M₂] [Module R M₃] {Q₁ : QuadraticForm R M₁} {Q₂ : QuadraticForm R M₂} {Q₃ : QuadraticForm R M₃} (f : QuadraticForm.IsometryEquiv Q₁ Q₂) (g : QuadraticForm.IsometryEquiv Q₂ Q₃) :

          The composition of two isometric equivalences between quadratic forms.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            @[simp]
            theorem QuadraticForm.IsometryEquiv.toIsometry_apply {R : Type u_2} {M₁ : Type u_5} {M₂ : Type u_6} [CommSemiring R] [AddCommMonoid M₁] [AddCommMonoid M₂] [Module R M₁] [Module R M₂] {Q₁ : QuadraticForm R M₁} {Q₂ : QuadraticForm R M₂} (g : QuadraticForm.IsometryEquiv Q₁ Q₂) (x : M₁) :
            def QuadraticForm.IsometryEquiv.toIsometry {R : Type u_2} {M₁ : Type u_5} {M₂ : Type u_6} [CommSemiring R] [AddCommMonoid M₁] [AddCommMonoid M₂] [Module R M₁] [Module R M₂] {Q₁ : QuadraticForm R M₁} {Q₂ : QuadraticForm R M₂} (g : QuadraticForm.IsometryEquiv Q₁ Q₂) :
            Q₁ →qᵢ Q₂

            Isometric equivalences are isometric maps

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              theorem QuadraticForm.Equivalent.symm {R : Type u_2} {M₁ : Type u_5} {M₂ : Type u_6} [CommSemiring R] [AddCommMonoid M₁] [AddCommMonoid M₂] [Module R M₁] [Module R M₂] {Q₁ : QuadraticForm R M₁} {Q₂ : QuadraticForm R M₂} (h : QuadraticForm.Equivalent Q₁ Q₂) :
              theorem QuadraticForm.Equivalent.trans {R : Type u_2} {M₁ : Type u_5} {M₂ : Type u_6} {M₃ : Type u_7} [CommSemiring R] [AddCommMonoid M₁] [AddCommMonoid M₂] [AddCommMonoid M₃] [Module R M₁] [Module R M₂] [Module R M₃] {Q₁ : QuadraticForm R M₁} {Q₂ : QuadraticForm R M₂} {Q₃ : QuadraticForm R M₃} (h : QuadraticForm.Equivalent Q₁ Q₂) (h' : QuadraticForm.Equivalent Q₂ Q₃) :
              def QuadraticForm.isometryEquivOfCompLinearEquiv {R : Type u_2} {M : Type u_4} {M₁ : Type u_5} [CommSemiring R] [AddCommMonoid M] [AddCommMonoid M₁] [Module R M] [Module R M₁] (Q : QuadraticForm R M) (f : M₁ ≃ₗ[R] M) :

              A quadratic form composed with a LinearEquiv is isometric to itself.

              Equations
              Instances For
                noncomputable def QuadraticForm.isometryEquivBasisRepr {ι : Type u_1} {R : Type u_2} {M : Type u_4} [CommSemiring R] [AddCommMonoid M] [Module R M] [Fintype ι] (Q : QuadraticForm R M) (v : Basis ι R M) :

                A quadratic form is isometrically equivalent to its bases representations.

                Equations
                Instances For
                  noncomputable def QuadraticForm.isometryEquivWeightedSumSquares {K : Type u_3} {V : Type u_8} [Field K] [Invertible 2] [AddCommGroup V] [Module K V] (Q : QuadraticForm K V) (v : Basis (Fin (FiniteDimensional.finrank K V)) K V) (hv₁ : BilinForm.iIsOrtho (QuadraticForm.associated Q) v) :

                  Given an orthogonal basis, a quadratic form is isometrically equivalent with a weighted sum of squares.

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For