Instances and theorems for Small
. #
In particular we prove small_of_injective
and small_of_surjective
.
Equations
- (_ : Small.{w, v} { x : α // P x }) = (_ : Small.{w, v} { x : α // P x })
theorem
small_of_injective
{α : Type v}
{β : Type w}
[Small.{u, w} β]
{f : α → β}
(hf : Function.Injective f)
:
theorem
small_of_surjective
{α : Type v}
{β : Type w}
[Small.{u, v} α]
{f : α → β}
(hf : Function.Surjective f)
:
theorem
small_subset
{α : Type v}
{s : Set α}
{t : Set α}
(hts : t ⊆ s)
[Small.{u, v} ↑s]
:
Small.{u, v} ↑t
Equations
- (_ : Small.{w, v} α) = (_ : Small.{w, v} α)
theorem
small_of_injective_of_exists
{α : Type v}
{β : Type w}
{γ : Type v'}
[Small.{u, v} α]
(f : α → γ)
{g : β → γ}
(hg : Function.Injective g)
(h : ∀ (b : β), ∃ (a : α), f a = g b)
:
This can be seen as a version of small_of_surjective
in which the function f
doesn't
actually land in β
but in some larger type γ
related to β
via an injective function g
.
We don't define small_of_fintype
or small_of_countable
in this file,
to keep imports to Logic
to a minimum.
instance
small_Pi
{α : Type u_2}
(β : α → Type u_1)
[Small.{w, u_2} α]
[∀ (a : α), Small.{w, u_1} (β a)]
:
Small.{w, max u_1 u_2} ((a : α) → β a)
Equations
- (_ : Small.{w, max u_1 u_2} ((a : α) → β a)) = (_ : Small.{w, max u_1 u_2} ((a : α) → β a))
instance
small_prod
{α : Type u_1}
{β : Type u_2}
[Small.{w, u_1} α]
[Small.{w, u_2} β]
:
Small.{w, max u_2 u_1} (α × β)
Equations
- (_ : Small.{w, max u_2 u_1} (α × β)) = (_ : Small.{w, max u_1 u_2} (α × β))
instance
small_sum
{α : Type u_1}
{β : Type u_2}
[Small.{w, u_1} α]
[Small.{w, u_2} β]
:
Small.{w, max u_2 u_1} (α ⊕ β)
Equations
- (_ : Small.{w, max u_2 u_1} (α ⊕ β)) = (_ : Small.{w, max u_1 u_2} (α ⊕ β))
Equations
- (_ : Small.{w, u_1} (Set α)) = (_ : Small.{w, u_1} (Set α))
instance
small_range
{α : Type v}
{β : Type w}
(f : α → β)
[Small.{u, v} α]
:
Small.{u, w} ↑(Set.range f)
Equations
- (_ : Small.{u, w} ↑(Set.range f)) = (_ : Small.{u, w} ↑(Set.range f))
instance
small_image
{α : Type v}
{β : Type w}
(f : α → β)
(S : Set α)
[Small.{u, v} ↑S]
:
Small.{u, w} ↑(f '' S)
Equations
- (_ : Small.{u, w} ↑(f '' S)) = (_ : Small.{u, w} ↑(f '' S))