Equations
- instZeroShrink = Equiv.zero (equivShrink α).symm
Equations
- instOneShrink = Equiv.one (equivShrink α).symm
@[simp]
theorem
equivShrink_symm_zero
{α : Type u_1}
[Zero α]
[Small.{u_2, u_1} α]
:
(equivShrink α).symm 0 = 0
@[simp]
theorem
equivShrink_symm_one
{α : Type u_1}
[One α]
[Small.{u_2, u_1} α]
:
(equivShrink α).symm 1 = 1
Equations
- instAddShrink = Equiv.add (equivShrink α).symm
Equations
- instMulShrink = Equiv.mul (equivShrink α).symm
@[simp]
theorem
equivShrink_symm_add
{α : Type u_1}
[Add α]
[Small.{u_2, u_1} α]
(x : Shrink.{u_2, u_1} α)
(y : Shrink.{u_2, u_1} α)
:
(equivShrink α).symm (x + y) = (equivShrink α).symm x + (equivShrink α).symm y
@[simp]
theorem
equivShrink_add
{α : Type u_1}
[Add α]
[Small.{u_2, u_1} α]
(x : α)
(y : α)
:
(equivShrink α) (x + y) = (equivShrink α) x + (equivShrink α) y
@[simp]
theorem
equivShrink_symm_mul
{α : Type u_1}
[Mul α]
[Small.{u_2, u_1} α]
(x : Shrink.{u_2, u_1} α)
(y : Shrink.{u_2, u_1} α)
:
(equivShrink α).symm (x * y) = (equivShrink α).symm x * (equivShrink α).symm y
@[simp]
theorem
equivShrink_mul
{α : Type u_1}
[Mul α]
[Small.{u_2, u_1} α]
(x : α)
(y : α)
:
(equivShrink α) (x * y) = (equivShrink α) x * (equivShrink α) y
Equations
- instSubShrink = Equiv.sub (equivShrink α).symm
Equations
- instDivShrink = Equiv.div (equivShrink α).symm
@[simp]
theorem
equivShrink_symm_sub
{α : Type u_1}
[Sub α]
[Small.{u_2, u_1} α]
(x : Shrink.{u_2, u_1} α)
(y : Shrink.{u_2, u_1} α)
:
(equivShrink α).symm (x - y) = (equivShrink α).symm x - (equivShrink α).symm y
@[simp]
theorem
equivShrink_sub
{α : Type u_1}
[Sub α]
[Small.{u_2, u_1} α]
(x : α)
(y : α)
:
(equivShrink α) (x - y) = (equivShrink α) x - (equivShrink α) y
@[simp]
theorem
equivShrink_symm_div
{α : Type u_1}
[Div α]
[Small.{u_2, u_1} α]
(x : Shrink.{u_2, u_1} α)
(y : Shrink.{u_2, u_1} α)
:
(equivShrink α).symm (x / y) = (equivShrink α).symm x / (equivShrink α).symm y
@[simp]
theorem
equivShrink_div
{α : Type u_1}
[Div α]
[Small.{u_2, u_1} α]
(x : α)
(y : α)
:
(equivShrink α) (x / y) = (equivShrink α) x / (equivShrink α) y
Equations
- instNegShrink = Equiv.Neg (equivShrink α).symm
Equations
- instInvShrink = Equiv.Inv (equivShrink α).symm
@[simp]
theorem
equivShrink_symm_neg
{α : Type u_1}
[Neg α]
[Small.{u_2, u_1} α]
(x : Shrink.{u_2, u_1} α)
:
(equivShrink α).symm (-x) = -(equivShrink α).symm x
@[simp]
theorem
equivShrink_neg
{α : Type u_1}
[Neg α]
[Small.{u_2, u_1} α]
(x : α)
:
(equivShrink α) (-x) = -(equivShrink α) x
@[simp]
theorem
equivShrink_symm_inv
{α : Type u_1}
[Inv α]
[Small.{u_2, u_1} α]
(x : Shrink.{u_2, u_1} α)
:
(equivShrink α).symm x⁻¹ = ((equivShrink α).symm x)⁻¹
@[simp]
theorem
equivShrink_inv
{α : Type u_1}
[Inv α]
[Small.{u_2, u_1} α]
(x : α)
:
(equivShrink α) x⁻¹ = ((equivShrink α) x)⁻¹
Equations
- instAddSemigroupShrink = Equiv.addSemigroup (equivShrink α).symm
Equations
- instSemigroupShrink = Equiv.semigroup (equivShrink α).symm
Equations
- instSemigroupWithZeroShrink = Equiv.semigroupWithZero (equivShrink α).symm
Equations
- instAddCommSemigroupShrink = Equiv.addCommSemigroup (equivShrink α).symm
Equations
- instCommSemigroupShrink = Equiv.commSemigroup (equivShrink α).symm
Equations
- instMulZeroClassShrink = Equiv.mulZeroClass (equivShrink α).symm
Equations
- instAddZeroClassShrink = Equiv.addZeroClass (equivShrink α).symm
Equations
- instMulOneClassShrink = Equiv.mulOneClass (equivShrink α).symm
Equations
- instMulZeroOneClassShrink = Equiv.mulZeroOneClass (equivShrink α).symm
Equations
- instAddMonoidShrink = Equiv.addMonoid (equivShrink α).symm
Equations
- instMonoidShrink = Equiv.monoid (equivShrink α).symm
Equations
- instAddCommMonoidShrink = Equiv.addCommMonoid (equivShrink α).symm
Equations
- instCommMonoidShrink = Equiv.commMonoid (equivShrink α).symm
Equations
- instAddGroupShrink = Equiv.addGroup (equivShrink α).symm
Equations
- instGroupShrink = Equiv.group (equivShrink α).symm
Equations
- instAddCommGroupShrink = Equiv.addCommGroup (equivShrink α).symm
Equations
- instCommGroupShrink = Equiv.commGroup (equivShrink α).symm