Documentation

Mathlib.MeasureTheory.Covering.DensityTheorem

Uniformly locally doubling measures and Lebesgue's density theorem #

Lebesgue's density theorem states that given a set S in a sigma compact metric space with locally-finite uniformly locally doubling measure μ then for almost all points x in S, for any sequence of closed balls B₀, B₁, B₂, ... containing x, the limit μ (S ∩ Bⱼ) / μ (Bⱼ) → 1 as j → ∞.

In this file we combine general results about existence of Vitali families for uniformly locally doubling measures with results about differentiation along a Vitali family to obtain an explicit form of Lebesgue's density theorem.

Main results #

@[irreducible]

A Vitali family in a space with a uniformly locally doubling measure, designed so that the sets at x contain all closedBall y r when dist x y ≤ K * r.

Equations
Instances For

    In the Vitali family IsUnifLocDoublingMeasure.vitaliFamily K, the sets based at x contain all balls closedBall y r when dist x y ≤ K * r.

    theorem IsUnifLocDoublingMeasure.tendsto_closedBall_filterAt {α : Type u_1} [MetricSpace α] [MeasurableSpace α] (μ : MeasureTheory.Measure α) [IsUnifLocDoublingMeasure μ] [SecondCountableTopology α] [BorelSpace α] [MeasureTheory.IsLocallyFiniteMeasure μ] {K : } {x : α} {ι : Type u_2} {l : Filter ι} (w : ια) (δ : ι) (δlim : Filter.Tendsto δ l (nhdsWithin 0 (Set.Ioi 0))) (xmem : ∀ᶠ (j : ι) in l, x Metric.closedBall (w j) (K * δ j)) :
    theorem IsUnifLocDoublingMeasure.ae_tendsto_measure_inter_div {α : Type u_1} [MetricSpace α] [MeasurableSpace α] (μ : MeasureTheory.Measure α) [IsUnifLocDoublingMeasure μ] [SecondCountableTopology α] [BorelSpace α] [MeasureTheory.IsLocallyFiniteMeasure μ] (S : Set α) (K : ) :
    ∀ᵐ (x : α) ∂MeasureTheory.Measure.restrict μ S, ∀ {ι : Type u_3} {l : Filter ι} (w : ια) (δ : ι), Filter.Tendsto δ l (nhdsWithin 0 (Set.Ioi 0))(∀ᶠ (j : ι) in l, x Metric.closedBall (w j) (K * δ j))Filter.Tendsto (fun (j : ι) => μ (S Metric.closedBall (w j) (δ j)) / μ (Metric.closedBall (w j) (δ j))) l (nhds 1)

    A version of Lebesgue's density theorem for a sequence of closed balls whose centers are not required to be fixed.

    See also Besicovitch.ae_tendsto_measure_inter_div.

    theorem IsUnifLocDoublingMeasure.ae_tendsto_average_norm_sub {α : Type u_1} [MetricSpace α] [MeasurableSpace α] (μ : MeasureTheory.Measure α) [IsUnifLocDoublingMeasure μ] [SecondCountableTopology α] [BorelSpace α] [MeasureTheory.IsLocallyFiniteMeasure μ] {E : Type u_2} [NormedAddCommGroup E] {f : αE} (hf : MeasureTheory.LocallyIntegrable f) (K : ) :
    ∀ᵐ (x : α) ∂μ, ∀ {ι : Type u_3} {l : Filter ι} (w : ια) (δ : ι), Filter.Tendsto δ l (nhdsWithin 0 (Set.Ioi 0))(∀ᶠ (j : ι) in l, x Metric.closedBall (w j) (K * δ j))Filter.Tendsto (fun (j : ι) => ⨍ (y : α) in Metric.closedBall (w j) (δ j), f y - f xμ) l (nhds 0)

    A version of Lebesgue differentiation theorem for a sequence of closed balls whose centers are not required to be fixed.

    theorem IsUnifLocDoublingMeasure.ae_tendsto_average {α : Type u_1} [MetricSpace α] [MeasurableSpace α] (μ : MeasureTheory.Measure α) [IsUnifLocDoublingMeasure μ] [SecondCountableTopology α] [BorelSpace α] [MeasureTheory.IsLocallyFiniteMeasure μ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] {f : αE} (hf : MeasureTheory.LocallyIntegrable f) (K : ) :
    ∀ᵐ (x : α) ∂μ, ∀ {ι : Type u_3} {l : Filter ι} (w : ια) (δ : ι), Filter.Tendsto δ l (nhdsWithin 0 (Set.Ioi 0))(∀ᶠ (j : ι) in l, x Metric.closedBall (w j) (K * δ j))Filter.Tendsto (fun (j : ι) => ⨍ (y : α) in Metric.closedBall (w j) (δ j), f yμ) l (nhds (f x))

    A version of Lebesgue differentiation theorem for a sequence of closed balls whose centers are not required to be fixed.