Documentation

Mathlib.MeasureTheory.Function.ConditionalExpectation.CondexpL1

Conditional expectation in L1 #

This file contains two more steps of the construction of the conditional expectation, which is completed in MeasureTheory.Function.ConditionalExpectation.Basic. See that file for a description of the full process.

The contitional expectation of an function is defined in MeasureTheory.Function.ConditionalExpectation.CondexpL2. In this file, we perform two steps.

Main definitions #

Conditional expectation of an indicator as a continuous linear map. #

The goal of this section is to build condexpInd (hm : m ≤ m0) (μ : Measure α) (s : Set s) : G →L[ℝ] α →₁[μ] G, which takes x : G to the conditional expectation of the indicator of the set s with value x, seen as an element of α →₁[μ] G.

def MeasureTheory.condexpIndL1Fin {α : Type u_1} {G : Type u_5} [NormedAddCommGroup G] {m : MeasurableSpace α} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} {s : Set α} [NormedSpace G] (hm : m m0) [MeasureTheory.SigmaFinite (MeasureTheory.Measure.trim μ hm)] (hs : MeasurableSet s) (hμs : μ s ) (x : G) :

Conditional expectation of the indicator of a measurable set with finite measure, as a function in L1.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    theorem MeasureTheory.condexpIndL1Fin_add {α : Type u_1} {G : Type u_5} [NormedAddCommGroup G] {m : MeasurableSpace α} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} {s : Set α} [NormedSpace G] {hm : m m0} [MeasureTheory.SigmaFinite (MeasureTheory.Measure.trim μ hm)] (hs : MeasurableSet s) (hμs : μ s ) (x : G) (y : G) :
    theorem MeasureTheory.condexpIndL1Fin_smul {α : Type u_1} {G : Type u_5} [NormedAddCommGroup G] {m : MeasurableSpace α} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} {s : Set α} [NormedSpace G] {hm : m m0} [MeasureTheory.SigmaFinite (MeasureTheory.Measure.trim μ hm)] (hs : MeasurableSet s) (hμs : μ s ) (c : ) (x : G) :
    theorem MeasureTheory.condexpIndL1Fin_smul' {α : Type u_1} {F : Type u_3} {𝕜 : Type u_7} [IsROrC 𝕜] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {m : MeasurableSpace α} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} {s : Set α} {hm : m m0} [MeasureTheory.SigmaFinite (MeasureTheory.Measure.trim μ hm)] [NormedSpace F] [SMulCommClass 𝕜 F] (hs : MeasurableSet s) (hμs : μ s ) (c : 𝕜) (x : F) :
    theorem MeasureTheory.norm_condexpIndL1Fin_le {α : Type u_1} {G : Type u_5} [NormedAddCommGroup G] {m : MeasurableSpace α} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} {s : Set α} [NormedSpace G] {hm : m m0} [MeasureTheory.SigmaFinite (MeasureTheory.Measure.trim μ hm)] (hs : MeasurableSet s) (hμs : μ s ) (x : G) :
    theorem MeasureTheory.condexpIndL1Fin_disjoint_union {α : Type u_1} {G : Type u_5} [NormedAddCommGroup G] {m : MeasurableSpace α} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} {s : Set α} {t : Set α} [NormedSpace G] {hm : m m0} [MeasureTheory.SigmaFinite (MeasureTheory.Measure.trim μ hm)] (hs : MeasurableSet s) (ht : MeasurableSet t) (hμs : μ s ) (hμt : μ t ) (hst : s t = ) (x : G) :

    Conditional expectation of the indicator of a set, as a function in L1. Its value for sets which are not both measurable and of finite measure is not used: we set it to 0.

    Equations
    Instances For
      theorem MeasureTheory.condexpIndL1_of_measure_eq_top {α : Type u_1} {G : Type u_5} [NormedAddCommGroup G] {m : MeasurableSpace α} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} {s : Set α} [NormedSpace G] {hm : m m0} [MeasureTheory.SigmaFinite (MeasureTheory.Measure.trim μ hm)] (hμs : μ s = ) (x : G) :
      theorem MeasureTheory.condexpIndL1_smul' {α : Type u_1} {F : Type u_3} {𝕜 : Type u_7} [IsROrC 𝕜] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {m : MeasurableSpace α} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} {s : Set α} {hm : m m0} [MeasureTheory.SigmaFinite (MeasureTheory.Measure.trim μ hm)] [NormedSpace F] [SMulCommClass 𝕜 F] (c : 𝕜) (x : F) :
      theorem MeasureTheory.condexpIndL1_disjoint_union {α : Type u_1} {G : Type u_5} [NormedAddCommGroup G] {m : MeasurableSpace α} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} {s : Set α} {t : Set α} [NormedSpace G] {hm : m m0} [MeasureTheory.SigmaFinite (MeasureTheory.Measure.trim μ hm)] (hs : MeasurableSet s) (ht : MeasurableSet t) (hμs : μ s ) (hμt : μ t ) (hst : s t = ) (x : G) :

      Conditional expectation of the indicator of a set, as a linear map from G to L1.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        theorem MeasureTheory.condexpInd_smul' {α : Type u_1} {F : Type u_3} {𝕜 : Type u_7} [IsROrC 𝕜] [NormedAddCommGroup F] [NormedSpace 𝕜 F] {m : MeasurableSpace α} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} {s : Set α} {hm : m m0} [MeasureTheory.SigmaFinite (MeasureTheory.Measure.trim μ hm)] [NormedSpace F] [SMulCommClass 𝕜 F] (c : 𝕜) (x : F) :
        (MeasureTheory.condexpInd F hm μ s) (c x) = c (MeasureTheory.condexpInd F hm μ s) x
        theorem MeasureTheory.condexpInd_disjoint_union_apply {α : Type u_1} {G : Type u_5} [NormedAddCommGroup G] {m : MeasurableSpace α} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} {s : Set α} {t : Set α} [NormedSpace G] {hm : m m0} [MeasureTheory.SigmaFinite (MeasureTheory.Measure.trim μ hm)] (hs : MeasurableSet s) (ht : MeasurableSet t) (hμs : μ s ) (hμt : μ t ) (hst : s t = ) (x : G) :
        theorem MeasureTheory.condexpInd_disjoint_union {α : Type u_1} {G : Type u_5} [NormedAddCommGroup G] {m : MeasurableSpace α} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} {s : Set α} {t : Set α} [NormedSpace G] {hm : m m0} [MeasureTheory.SigmaFinite (MeasureTheory.Measure.trim μ hm)] (hs : MeasurableSet s) (ht : MeasurableSet t) (hμs : μ s ) (hμt : μ t ) (hst : s t = ) :
        theorem MeasureTheory.set_integral_condexpInd {α : Type u_1} {G' : Type u_6} [NormedAddCommGroup G'] [NormedSpace G'] [CompleteSpace G'] {m : MeasurableSpace α} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} {s : Set α} {t : Set α} {hm : m m0} [MeasureTheory.SigmaFinite (MeasureTheory.Measure.trim μ hm)] (hs : MeasurableSet s) (ht : MeasurableSet t) (hμs : μ s ) (hμt : μ t ) (x : G') :
        ∫ (a : α) in s, ((MeasureTheory.condexpInd G' hm μ t) x) aμ = ENNReal.toReal (μ (t s)) x
        theorem MeasureTheory.condexpInd_nonneg {α : Type u_1} {m : MeasurableSpace α} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} {s : Set α} {hm : m m0} [MeasureTheory.SigmaFinite (MeasureTheory.Measure.trim μ hm)] {E : Type u_8} [NormedLatticeAddCommGroup E] [NormedSpace E] [OrderedSMul E] (hs : MeasurableSet s) (hμs : μ s ) (x : E) (hx : 0 x) :

        Conditional expectation of a function as a linear map from α →₁[μ] F' to itself.

        Equations
        Instances For
          theorem MeasureTheory.condexpL1CLM_smul {α : Type u_1} {F' : Type u_4} {𝕜 : Type u_7} [IsROrC 𝕜] [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] [NormedSpace F'] [CompleteSpace F'] {m : MeasurableSpace α} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} {hm : m m0} [MeasureTheory.SigmaFinite (MeasureTheory.Measure.trim μ hm)] (c : 𝕜) (f : (MeasureTheory.Lp F' 1)) :
          theorem MeasureTheory.set_integral_condexpL1CLM_of_measure_ne_top {α : Type u_1} {F' : Type u_4} [NormedAddCommGroup F'] [NormedSpace F'] [CompleteSpace F'] {m : MeasurableSpace α} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} {hm : m m0} [MeasureTheory.SigmaFinite (MeasureTheory.Measure.trim μ hm)] {s : Set α} (f : (MeasureTheory.Lp F' 1)) (hs : MeasurableSet s) (hμs : μ s ) :
          ∫ (x : α) in s, ((MeasureTheory.condexpL1CLM F' hm μ) f) xμ = ∫ (x : α) in s, f xμ

          Auxiliary lemma used in the proof of set_integral_condexpL1CLM.

          theorem MeasureTheory.set_integral_condexpL1CLM {α : Type u_1} {F' : Type u_4} [NormedAddCommGroup F'] [NormedSpace F'] [CompleteSpace F'] {m : MeasurableSpace α} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} {hm : m m0} [MeasureTheory.SigmaFinite (MeasureTheory.Measure.trim μ hm)] {s : Set α} (f : (MeasureTheory.Lp F' 1)) (hs : MeasurableSet s) :
          ∫ (x : α) in s, ((MeasureTheory.condexpL1CLM F' hm μ) f) xμ = ∫ (x : α) in s, f xμ

          The integral of the conditional expectation condexpL1CLM over an m-measurable set is equal to the integral of f on that set. See also set_integral_condexp, the similar statement for condexp.

          def MeasureTheory.condexpL1 {α : Type u_1} {F' : Type u_4} [NormedAddCommGroup F'] [NormedSpace F'] [CompleteSpace F'] {m : MeasurableSpace α} {m0 : MeasurableSpace α} (hm : m m0) (μ : MeasureTheory.Measure α) [MeasureTheory.SigmaFinite (MeasureTheory.Measure.trim μ hm)] (f : αF') :

          Conditional expectation of a function, in L1. Its value is 0 if the function is not integrable. The function-valued condexp should be used instead in most cases.

          Equations
          Instances For
            @[simp]
            theorem MeasureTheory.condexpL1_measure_zero {α : Type u_1} {F' : Type u_4} [NormedAddCommGroup F'] [NormedSpace F'] [CompleteSpace F'] {m : MeasurableSpace α} {m0 : MeasurableSpace α} {f : αF'} (hm : m m0) :
            theorem MeasureTheory.set_integral_condexpL1 {α : Type u_1} {F' : Type u_4} [NormedAddCommGroup F'] [NormedSpace F'] [CompleteSpace F'] {m : MeasurableSpace α} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} {hm : m m0} [MeasureTheory.SigmaFinite (MeasureTheory.Measure.trim μ hm)] {f : αF'} {s : Set α} (hf : MeasureTheory.Integrable f) (hs : MeasurableSet s) :
            ∫ (x : α) in s, (MeasureTheory.condexpL1 hm μ f) xμ = ∫ (x : α) in s, f xμ

            The integral of the conditional expectation condexpL1 over an m-measurable set is equal to the integral of f on that set. See also set_integral_condexp, the similar statement for condexp.

            theorem MeasureTheory.condexpL1_smul {α : Type u_1} {F' : Type u_4} {𝕜 : Type u_7} [IsROrC 𝕜] [NormedAddCommGroup F'] [NormedSpace 𝕜 F'] [NormedSpace F'] [CompleteSpace F'] {m : MeasurableSpace α} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} {hm : m m0} [MeasureTheory.SigmaFinite (MeasureTheory.Measure.trim μ hm)] (c : 𝕜) (f : αF') :